
Number theory explained from first principles ef1p.com/number-theory on 2023-02-271 / 92

Number theory
explained from first principles

This article and its code were first published on 17 September 2022 and last modified on 27 February 2023. If you like the article, please share it

with your friends on social media or support me with a donation. You can also cite this article, download it as a PDF, see what people are saying

about it on Twitter, join the discussion on Reddit, or use Google Translate to read it in another language.

Cite this article

You can cite this article in various citation styles as follows:

MLA: Etter, Kaspar. “Number theory explained from first principles.” Explained from First Principles, 17 Sep. 2022, https://explained-

from-first-principles.com/number-theory/. Accessed 27 Feb. 2023.

CMOS: Etter, Kaspar. “Number theory explained from first principles.” Explained from First Principles, September 17, 2022. Accessed

February 27, 2023. https://explained-from-first-principles.com/number-theory/.

APA: Etter, K. (2022, September 17). Number theory explained from first principles. Explained from First Principles. Retrieved February

27, 2023, from https://explained-from-first-principles.com/number-theory/

IEEE: K. Etter, “Number theory explained from first principles,” Explained from First Principles, Sep. 17, 2022. [Online]. Available:

https://explained-from-first-principles.com/number-theory/. [Accessed: Feb. 27, 2023].

BibTeX: @misc{etter_2022_number_theory, 
    title = {Number theory explained from first principles}, 
    url = {https://explained-from-first-principles.com/number-theory/}, 
    journal = {Explained from First Principles}, 
    author = {Etter, Kaspar}, 
    date = {2022-09-17}, 
    year = {2022}, 
    month = {Sep}, 
    day = {17}, 
    edition = {2023-02-27}, 
    urldate = {2023-02-27} 
}  

If you are worried about the persistence of this website, you can link to the latest snapshot of the Internet Archive instead.

If you are visiting this website for the first time, then please first read the front page, where I explain the intention of this blog and how to best

make use of it. As far as your privacy is concerned, all data entered on this page is stored locally in your browser unless noted otherwise. While I

researched the content on this page thoroughly, you take or omit actions based on it at your own risk. In no event shall I as the author be liable for

any damages arising from information or advice on this website or on referenced websites.

Preface

Number theory is the study of integers and the relations between them. Carl Friedrich Gauss (1777 − 1855) allegedly said that mathematics

is the queen of the sciences and that number theory is the queen of mathematics. What he meant by this is that mathematics, unlike the

empirical sciences, studies regularities which are independent from the universe that we live in. Not having to deal with the messiness of the

real world makes mathematics the purest of all sciences. Similarly, he must have considered number theory to be the most elegant and the

purest branch of mathematics, given its beauty and that it was studied for centuries for its own sake. Or as Leonard Eugene Dickson (1874 −

1954) put it: “Thank God that number theory is unsullied by any application”. This changed with the advent of modern cryptography and

coding theory in the second half of the 20th century. Unlike the mathematicians who discovered most of what I cover in this article, we’re

studying number theory only for its applications in these two fields, which will be the topics of the next two articles.

Outline

The goal of this article is to understand how we can construct linear one-way functions using finite groups which have a certain property.

There are two families of finite groups which are widely used in modern cryptography: multiplicative groups and elliptic curves. The former

are based on modular arithmetic, the latter on finite fields. Prime numbers play a crucial role in both. We’ll study these topics in a somewhat

peculiar order and also visit additive groups and commutative rings on our journey:

https://ef1p.com/number-theory/
https://github.com/KasparEtter/ef1p/blob/main/pages/number-theory/number-theory.md
https://github.com/KasparEtter/ef1p/blob/main/pages/number-theory/number-theory.tsx
https://github.com/KasparEtter/ef1p/commits/main/pages/number-theory/number-theory.md
https://twitter.com/ExplainedFrom1P
http://localhost:4000/#donate
http://localhost:4000/pages/number-theory/generated/2023-02-27%20Number%20theory%20explained%20from%20first%20principles.pdf
https://twitter.com/search?q=https%3A%2F%2Fexplained-from-first-principles.com%2Fnumber-theory%2F%20-from%3AKasparEtter&f=live
https://www.reddit.com/r/ef1p/comments/xgsco5/number_theory_explained_from_first_principles/
https://translate.google.com/translate?u=https://explained-from-first-principles.com/number-theory/
https://en.wikipedia.org/wiki/Citation#Styles
https://en.wikipedia.org/wiki/MLA_Handbook
https://en.wikipedia.org/wiki/The_Chicago_Manual_of_Style
https://en.wikipedia.org/wiki/APA_style
https://en.wikipedia.org/wiki/IEEE_style
https://en.wikipedia.org/wiki/BibTeX
https://web.archive.org/web/https://explained-from-first-principles.com/number-theory/
https://en.wikipedia.org/wiki/Internet_Archive
http://localhost:4000/
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Science#Branches_of_science
https://xkcd.com/435/
https://en.wikipedia.org/wiki/Pure_mathematics
https://en.wikipedia.org/wiki/Mathematical_beauty
https://en.wikipedia.org/wiki/Leonard_Eugene_Dickson
https://en.wikipedia.org/wiki/Cryptography#Modern_cryptography
https://en.wikipedia.org/wiki/Coding_theory


Number theory explained from first principles ef1p.com/number-theory on 2023-02-272 / 92

1. Linear one-way functions

2. Finite groups

4. Additive groups
(Additive notation)

5. Multiplicative groups
(Multiplicative notation)

9. Elliptic curves
(Additive notation)

3. Modular arithmetic 6. Prime numbers 8. Finite fields

7. Commutative rings

How the various chapters of this article build on one another.

Since it’s easy to get lost in theorems and proofs, I start this article with introducing and motivating the concept of linear one-way functions

so that we never lose sight of our goal. Afterwards, I cover finite groups in the abstract in order to establish the terminology that we will use

for the rest of the article. Establishing such a mental framework first also helps us to process our observations later on. Additionally, proving

properties in the abstract saves us a lot of work when looking at multiple examples. If you read about these topics for the first time, feel free

to jump ahead and play with concrete examples before understanding the theory behind them. If you really want to grasp the math behind

modern cryptography, you likely have to read this article more than once anyway. The reason for covering modular arithmetic and

multiplicative groups before prime numbers is to get as far as possible before the math gets more challenging and to understand why prime

numbers are so special. After learning about elliptic curves, I cover the best known algorithms for breaking our linear one-way functions in a

bonus chapter, before concluding the article with formal proofs of basic group properties as an appendix.

Contributions

There exist already plenty of textbooks and blog posts on number theory (see below for some recommendations), so I wasn’t sure whether

it’s worth adding my own. Since future articles will require a thorough understanding of number theory and my ambition is to explain things

from first principles, I proceeded anyway. Looking at the result, here’s what sets this article apart:

Focus: Number theory is a big field with many advanced concepts. This article focuses on the aspects which are relevant for modern

cryptography and coding theory. As you’ll see, almost all theorems mentioned in this article are being used later on.

Notation: As we’ll see, two notations are used in group theory, and I haven’t found any other source which consistently provides both. Not

having to translate between the two yourself reduces your cognitive load.

Intuition: I went to great lengths to complement formal proofs with more intuitive explanations. While formal rigor is important, nothing

beats an intuitive understanding of a theorem or an algorithm.

Completeness: Apart from the chapter on elliptic curves, I took no shortcuts when explaining why things are the way they are. Therefore,

this article contains the complete proofs of almost all covered theorems, including Carmichael’s totient function, the Monier-Rabin bound,

square roots modulo composite numbers, and the expected running time of Pollard’s rho algorithm, which I haven’t found online outside

of PDFs. While you might not be interested in such advanced proofs for now, this article is designed to serve as a work of reference for

your whole journey into modern cryptography.

Interactivity: Depending on how you count them, this article contains up to 40 interactive tools, which I also published on a separate page.

Many tools, such as the repetition tables, visualize important group properties. Many other tools show how important algorithms work,

such as the extended Euclidean algorithm, the Miller-Rabin primality test, and the Tonelli-Shanks algorithm. I also implemented the main

algorithms to solve the discrete-logarithm problem, such as Pollard’s rho algorithm, the Pohlig-Hellman algorithm, and the index-calculus

algorithm. Besides being fun to play with, these tools allow you to check your own hypotheses, which makes mathematics an empirical

science after all. 🙂

Math aversion

It should be no surprise that an article about math contains a lot of math. If you’re afraid of math, then see this article as a free exposure-

therapy session. On a more serious note: Number theory is quite different from the math you endured during high school. Number theory is

mostly about understanding why some properties follow from others. You won’t have to calculate anything yourself; this is what computers

https://ef1p.com/number-theory/
http://localhost:4000/#ambition
https://en.wikipedia.org/wiki/Cognitive_load
http://localhost:4000/#interactive-tools
http://localhost:4000/number-theory/tools/
https://en.wikipedia.org/wiki/Exposure_therapy


Number theory explained from first principles ef1p.com/number-theory on 2023-02-273 / 92

are for. At times, the notation can seem daunting, but this is actually a problem of language and communication, not math. The situation isn’t

made easier by the fact that different notations are used to talk about the same things. While I tried to keep everything as unconfusing as

possible, this is an aspect that I couldn’t change.

Why proofs?

There is a big difference between understanding how something works and understanding why something works. In mathematics, answers

to why questions are called proofs. Proofs explain why a statement is true by showing how the statement can be deduced from already

proven statements (called theorems) and statements which are simply assumed to be true (called axioms). If you want to understand only

how modern cryptography works, you can skip this whole article and read just the next one. If you want to understand also why modern

cryptography works, there is no way around proofs, even if you find them overly formal and tedious. But of course, you can always ignore

answers to questions you would not have asked.

Further reading

The two most important sources when writing this article were A Computational Introduction to Number Theory and Algebra by Victor

Shoup and the Handbook of Applied Cryptography by Alfred Menezes, Paul van Oorschot, and Scott Vanstone (1947 − 2014). Consult the

former for mathematical proofs and the latter for algorithmic aspects. Other useful sources are wikis for proofs, such as ProofWiki and

Groupprops, and question-and-answer websites, such as Stack Exchange and Quora.

Linear one-way functions

Definition
The term “linear one-way function” consists of three words:

Function: A function maps inputs from one set to outputs in the same or some other set. In mathematics, functions are always deterministic,

which means that the output is determined entirely by the input. I write , with  being the name of the function, lowercase 

denoting the input, and uppercase  referring to the output of the function.

One-way: Computing the output  from the input  is efficient, whereas finding an input  which maps to a given output  is computationally

infeasible. I depict efficient calculations with a green arrow and infeasible ones with a red arrow.

Linear: We restrict the input of our function to integers (the whole numbers) and require that there exists some operation  so that 

. (The ring operator ∘ is often used to denote the composition of functions, but I use it simply as a placeholder for an actual

operator.) In other words, if , then , which can be illustrated as follows:

a b c

A B C

+ =

∘ =

The properties of a linear one-way function.

Comparison with cryptographic hash functions

As we saw in a previous article, cryptographic hash functions work on inputs of arbitrary size and have to fulfill additional requirements,

namely second-preimage resistance and collision resistance. We don’t care about these properties here because we will limit our linear one-

way functions to a finite set of inputs and construct them in such a way that unequal inputs are mapped to unequal outputs. Depending on

whether you limit the set of inputs or not, second preimages either don’t exist or are trivial to find. On the other hand, cryptographic hash

functions are typically not linear (as long as we ignore provably secure hash functions, which are of limited practical use).

Computational complexity theory

Computational complexity theory classifies problems according to how many steps are needed to solve them. Determining the precise

number of steps required to solve an instance of a problem is of little interest, though. What computer scientists care about is how the

required effort depends on the size of the input: If you double the input, does the number of steps that it takes to find a solution grow

polynomially, such as quadrupling, or exponentially? Problems whose computational complexity grows exponentially with the input size

become intractable if you make the input large enough. One-way functions can exist only if there are problems which cannot be solved in

f(a) = A f a

A

A a a A

∘ f(a +
b) = f(a) ∘ f(b)

a + b = c f(a) ∘ f(b) = f(c)

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Mathematical_proof
https://en.wikipedia.org/wiki/Theorem
https://en.wikipedia.org/wiki/Axiom
https://shoup.net/ntb/
https://shoup.net/
https://cacr.uwaterloo.ca/hac/
https://uwaterloo.ca/scholar/ajmeneze
https://carleton.ca/scs/people/paul-van-oorschot/
https://uwaterloo.ca/combinatorics-and-optimization/about/people/scott-vanstone
https://en.wikipedia.org/wiki/Wiki
https://proofwiki.org/wiki/Main_Page
https://groupprops.subwiki.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Q%26A_software
https://math.stackexchange.com/
https://quora.com/
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Operation_(mathematics)
https://unicode-table.com/en/2218/
https://en.wikipedia.org/wiki/Function_composition
http://localhost:4000/email/#cryptographic-hash-functions
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Security_of_cryptographic_hash_functions#Provably_secure_hash_functions
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time
https://en.wikipedia.org/wiki/Time_complexity#Exponential_time
https://en.wikipedia.org/wiki/Computational_complexity_theory#Intractability


Number theory explained from first principles ef1p.com/number-theory on 2023-02-274 / 92

polynomial time, but solutions to which can be verified in polynomial time. It is widely believed that such problems exist, but we still lack a

proof for this. This conjecture, which is known as P ≠ NP, is the most important open question in computer science. Examples of problems for

which no polynomial-time algorithms are known but whose solution can be verified in polynomial time are integer factorization and the

discrete-logarithm problem (DLP).

Motivation
Linear one-way functions are useful in cryptography because they allow a party to conceal information by feeding it into a linear one-way

function, while another party can still perform computations with the output of the linear one-way function. For example, a party who knows the

output  and the input  can calculate  without having to learn  by repeating   times:

Notation
Linear one-way functions are an abstract concept, which I made up for this introduction to asymmetric cryptography. Instead of using the generic

operator , the operation in the output set of actual linear one-way functions is usually written as multiplication or addition, even when it has

nothing to do with multiplication or addition of integers. As a consequence, every equation can be written in a generic, a multiplicative, and an

additive notation. I do this with boxes like the following, where I choose the default notation (or “all”) depending on the context, and you can select

another notation by clicking on the corresponding tab:

You can change the notation throughout this article by double-clicking on the corresponding tab.

Repetitions
As we will see, linear one-way functions are typically constructed by repeating an element from the output set, the so-called generator , the

specified number of times. Repeated multiplication is written as exponentiation, and repeated addition is written as multiplication, where the

multiplication sign is usually omitted:

The generic notation is a valuable reminder that the multiplicative and the additive notation stand for the same thing. However, repetitions are a

bit cumbersome to write, which is why only the multiplicative and the additive notation are used in practice.

Linearity
It is easy to see why repeating an element from the output set is a linear operation (assuming that the operation is associative):

f(a) b f(a ⋅ b) a f(a) b

f(a ⋅ b) = f(  ) =

b times

 a + … + a  .

b times

 f(a) ∘ … ∘ f(a)

∘

Generic

f(a + b) = f(a) ∘ f(b)

Multiplicative

f(a + b) = f(a) ⋅ f(b)

Additive

f(a + b) = f(a) + f(b)

G

Generic

f(a) =  

a times

 G ∘ … ∘ G

Multiplicative

f(a) =  =
a times

 G ⋅ … ⋅ G Ga

Additive

f(a) =  =
a times

 G + … + G aG

f(a + b) =  =
a+b times

 G ∘ … ∘ G  ∘
a times

 G ∘ … ∘ G  =
b times

 G ∘ … ∘ G f(a) ∘ f(b)

Generic Multiplicative Additive All

Generic Multiplicative Additive All

Generic Multiplicative Additive All

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time
https://en.wikipedia.org/wiki/Conjecture
https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_computer_science
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Abelian_group#Notation
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Multiplication_sign
https://en.wikipedia.org/wiki/Juxtaposition#Mathematics


Number theory explained from first principles ef1p.com/number-theory on 2023-02-275 / 92

Zero as input
If zero is a valid input to a linear function, there has to be an element in the output set which does not affect any other element:

This element is called the identity element or the neutral element. Given its special role, we assign a specific letter to it:

Note that I use the letters  and  instead of  and  because elements in the output set do not have to be integers. In the case of elliptic curves,

for example,  is the point at infinity. The resemblance with the corresponding integer is no coincidence, though.

Negative inputs
If we allow the input of a linear function to be negative, there has to be an inverse element for each element in the output set:

In the following chapter, we will formalize these concepts and prove interesting properties about them.

Abstract algebra

Algebra is the study of how to manipulate equations with symbols, and abstract algebra is the study of algebraic structures, which consist of

a set and certain operations on the elements of the set. The goal of abstract algebra is to understand the properties of such structures at the

highest level of abstraction so that these properties are applicable to any structure which satisfies the same requirements. Each algebraic

structure has its own set of requirements, which are called axioms. Axioms are the premises from which conclusions are derived. The next

chapter is about finite groups, but we’ll encounter other algebraic structures later on, namely commutative rings and finite fields.

Finite groups

Group axioms
A group consists of a set and a binary operation, which combines any two elements of the set according to the following rules:

Closure: When applying the operation to any two elements of the set, the resulting element is also part of the set.

Associativity: Operations can be evaluated in any order without changing the result (i.e. parentheses don’t matter).

Identity: There exists a unique identity element which, when combined with any element, results in the other element.

Invertibility: Each element has a unique inverse. If you combine an element with its inverse, you get the identity element.

The operation can be written in different ways, which leads to different notations for the identity element and the inverses:

f(a) = f(a + 0) = f(a) ∘ f(0)

Generic

f(0) =  =
0 times

 G ∘ … ∘ G E

Multiplicative

f(0) = G =0 I

Additive

f(0) = 0G = O

I O 1 0
O

f(0) = f(a + (−a)) = f(a) ∘ f(−a) = E

Associativity: For any elements , , and , .

Identity element : For any element , .

 for the inverse of : For any element , .

Generic

A B C (A ∘ B) ∘ C = A ∘ (B ∘ C)

E A A ∘ E = E ∘ A = A

A A A A ∘ =A ∘A A = E

Generic Multiplicative Additive All

Generic Multiplicative Additive All

Generic Multiplicative Additive All

Generic Multiplicative Additive All

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/0
https://en.wikipedia.org/wiki/Identity_element
https://en.wikipedia.org/wiki/Negative_number
https://en.wikipedia.org/wiki/Inverse_element
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Abstract_algebra
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Abstraction
https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Premise
https://en.wikipedia.org/wiki/Logical_consequence
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Group_(mathematics)#Definition
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Identity_element
https://en.wikipedia.org/wiki/Inverse_element


Number theory explained from first principles ef1p.com/number-theory on 2023-02-276 / 92

Usually, the group axioms are presented in a reduced version, from which properties like the uniqueness of the identity are derived. Since this is

not important for our purposes, I moved such derivations to the end of this article.

Example of a finite group

The hours of an analog clock form a finite group. Its set consists of the elements 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. In order to make things

easier mathematically, we relabel 12 as 0. The operation is addition, where we wrap around to 0 after reaching 11:

0
1

2

3

4

5
6

7

8

9

10

11

+ 6
mod 12

6 hours past 9 a.m. is 3 p.m.

As we’ll discuss later, the wrapping around corresponds to the modulo operation. Clearly, this group is closed: No matter how much time

passes, the hour hand never leaves the clock. Associativity is given by the linearity of time and addition: Waiting for B hours and then for C

hours is the same as waiting for B + C hours. 0 is the identity element: A + 0 = 0 + A = A. And finally, every element has an inverse: the number

of hours you have to wait until it’s noon or midnight again. For example, 2 + 10 = 0.

Unique solution
The defining property of a group is that the following equation has a unique solution for any elements  and  of the group:

The same is true if  is on the right side of . Since the solution is unique, different combinations map to different results:

Commutative groups

Associativity: For any elements , , and , .

Identity element : For any element , .

 for the inverse of : For any element , .

Multiplicative

A B C (A ⋅ B) ⋅ C = A ⋅ (B ⋅ C)

I A A ⋅ I = I ⋅ A = A

A−1 A A A ⋅ A =−1 A ⋅−1 A = I

Associativity: For any elements , , and , .

Identity element : For any element , .

 for the inverse of : For any element , .

Additive

A B C (A + B) + C = A + (B + C)

O A A + O = O + A = A

−A A A A + (−A) = (−A) + A = O

A B

X ∘ A = B has a unique solution, namely X = B ∘ A

because (B ∘ ) ∘A A = B ∘ ( ∘A A) = B ∘ E = B.

Any two solutions X   and X   are the same because1 2

X  ∘ A1

(X  ∘ A) ∘1 A

X  ∘ (A ∘ )1 A

X  ∘ E1

X1

= X  ∘ A2

= (X  ∘ A) ∘2 A

= X  ∘ (A ∘ )2 A

= X  ∘ E2

= X  .2

X A

If X  =1  X  , then X  ∘2 1 A = X  ∘2 A.

Generic Multiplicative Additive All

Generic Multiplicative Additive All

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Clock#Analog
https://en.wikipedia.org/wiki/Clock_face


Number theory explained from first principles ef1p.com/number-theory on 2023-02-277 / 92

An operation is commutative if swapping the inputs does not change the output, i.e. the following holds for any elements  and :

Commutativity is not required in the above definition. It follows from the reduced group axioms that the right identity is also an identity when

applied from the left and that any right inverse is also an inverse when applied from the left, even if the operation itself is not commutative. A

group whose operation is commutative is called a commutative group or an abelian group, named after Niels Henrik Abel (1802 − 1829). (Even

though “abelian” is derived from a proper name, the first letter is usually not capitalized.)

Element repetitions
Instead of combining two different elements, a single element can be combined repeatedly with itself. We write this as follows:

As noted earlier, the generic operation  lacks a concise notation for repetitions, which is why I don’t include it in this section.

Since the group operation is associative (which means that we can move parentheses around), it follows immediately that:

And since repetitions of inverses cancel as many repetitions of the element itself, we can make it work for differences as well:

If we don’t require the difference to be positive, we get the following definitions for zero and a negative number of repetitions:

Element repetitions example

In the case of an analog clock, we wrap around to  when reaching . I write  to denote that  up to a multiple of .

Repeating the element , we have , followed by , and so on:

A B

A ∘ B = B ∘ A

Multiplicative

A =n
 

n times

 A ⋅ … ⋅ A

Additive

nA =  

n times

 A + … + A

∘

Multiplicative

A =m+n
 =

m+n times

 A ⋅ … ⋅ A (  ) ⋅
m times

 A ⋅ … ⋅ A (  ) =
n times

 A ⋅ … ⋅ A A ⋅m An

Additive

(m + n)A =  =
m+n times

 A + … + A (  ) +
m times

 A + … + A (  ) =
n times

 A + … + A mA + nA

Multiplicative

A =m−n
 =

m−n times

 A ⋅ … ⋅ A (  ) ⋅
m times

 A ⋅ … ⋅ A (  ) =
n times

 A ⋅ … ⋅ A−1 −1 A ⋅m (A )−1 n

Additive

(m − n)A =  =
m−n times

 A + … + A (  ) +
m times

 A + … + A (  ) =

n times

 (−A) + … + (−A) mA + n(−A)

Multiplicative

A0

A−n

= I

= (A )−1 n

Additive

0A

(−n)A

= O

= n(−A)

0 12 A =  12 B A = B 12
5 2 ⋅ 5 =  12 5 + 5 =  12 10 3 ⋅ 5 =  12 5 + 5 + 5 =  12 10 + 5 =  12 3

Generic Multiplicative Additive All

Multiplicative Additive Both

Multiplicative Additive Both

Multiplicative Additive Both

Multiplicative Additive Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Abelian_group
https://en.wikipedia.org/wiki/Niels_Henrik_Abel
https://en.wikipedia.org/wiki/Proper_name
https://en.wikipedia.org/wiki/Abelian_group#A_note_on_typography


Number theory explained from first principles ef1p.com/number-theory on 2023-02-278 / 92

1 · 5 2 · 5 3 · 5 4 · 5 5 · 5 6 · 5 7 · 5 8 · 5 9 · 5 10 · 5 11 · 5 12 · 5 …

5 10 3 8 1 6 11 4 9 2 7 0 …

Repeating the element 5 in the so-called additive group of integers modulo 12.

Using the above definitions, we have that  and , where  because . Therefore:

(−1) · 5 

= 1 · 7

(−2) · 5 

= 2 · 7

(−3) · 5 

= 3 · 7

(−4) · 5 

= 4 · 7

(−5) · 5 

= 5 · 7

(−6) · 5 

= 6 · 7

(−7) · 5 

= 7 · 7

(−8) · 5 

= 8 · 7

(−9) · 5 

= 9 · 7

(−10) · 5 

= 10 · 7

(−11) · 5 

= 11 · 7

(−12) · 5 

= 12 · 7 …

7 2 9 4 11 6 1 8 3 10 5 0 …

The negative repetitions of the element 5 in the additive group of integers modulo 12.

Fast repetitions
The goal of this article is to construct linear one-way functions. As we’ve seen in the introduction, repeating an element is a linear operation. As

we’ll see later, figuring out how many times an element has been repeated is (presumably) computationally infeasible in some groups. In this

section, we want to understand why repeating an element a certain number of times is so much easier than determining the number of repetitions

when given the result. Let’s start with how we can compute element repetitions efficiently.

Instead of performing one repetition at a time, we can compute  repeated  times for any integer  using the following insight:

Solving a problem by reducing it to smaller instances of the same problem is known as recursion. The above algorithm terminates because a

negative  is transformed into a positive  and then  gets smaller in every iteration until it reaches zero. Since an odd number becomes even

when you subtract one,  is halved at least in every other iteration. Therefore, the running time of the algorithm is logarithmic with regard to the

input . Since halving a binary number is the same as dropping its least-significant bit, one can also say that the running time is linear in the bit

length of . In other words, if you double the length of a number (rather than its size), you just double the number of steps required.

When using the multiplicative notation, this algorithm is known as exponentiation by squaring or square-and-multiply. When using the additive

notation, this becomes multiplication by doubling or double-and-add. The algorithm exploits the fact that the group operation is associative:

Instead of evaluating the expression from left to right, the operations are grouped in such a way that as many intermediate results as possible can

be reused. Reusing intermediate results instead of recomputing them is called common subexpression elimination in compiler design. It’s also the

core idea of dynamic programming. Let’s look at an example:

Instead of 12 group operations, we performed only 5 (ignoring the combinations with the identity element). 13 written as a binary number is 1101

(8 + 4 + 1), which corresponds to the pattern of when you have to combine the intermediate result with the element before doubling/squaring it

again. (If you look at the recursive formula, the least-significant bit determines whether the current number is odd or even and thus whether you

combine the recursive invocation with the element or not before dropping this bit.)

0 ⋅ 5 =12 0 (−n)5 =  12 n(−5) −5 =  12 7 5 + 7 =  12 0

A n n

A =n
   

⎩
⎨
⎧(A )−1 −n

I

A ⋅ An−1

(A ) 2
n 2

if n < 0,

if n = 0,
if n is odd,
if n is even.

n n n

n

n

n

A A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 

X2 · A X2 X2 · A

We can compute A  in 5 steps (in green) instead of 12 steps (in blue) by squaring intermediate results.

  

A13 = A ⋅ A ⋅ A ⋅ A ⋅ A ⋅ A ⋅ A ⋅ A ⋅ A ⋅ A ⋅ A ⋅ A ⋅ A

= ((((A ⋅ A) ⋅ A) ⋅ ((A ⋅ A) ⋅ A)) ⋅ (((A ⋅ A) ⋅ A) ⋅ ((A ⋅ A) ⋅ A))) ⋅ A

= (((I ⋅  ) ⋅  ) ⋅  ) ⋅  

1

 

↑
A 2

1

 

↑
A

2

0

 

↑
I

2

1

 

↑
A

13

Multiplicative Additive Both

Multiplicative Additive Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Analysis_of_algorithms#Run-time_analysis
https://en.wikipedia.org/wiki/Time_complexity#Logarithmic_time
http://localhost:4000/internet/#number-encoding
https://en.wikipedia.org/wiki/Bit_numbering#Bit_significance_and_indexing
https://en.wikipedia.org/wiki/Bit-length
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Common_subexpression_elimination
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Dynamic_programming


Number theory explained from first principles ef1p.com/number-theory on 2023-02-279 / 92

Crucially, this technique works only if you know how many repetitions you have to perform. If you try to determine the number of repetitions

from the result, you cannot work backwards and halve the number every other step, which is why this algorithm can be used only in one direction.

I cover the best known algorithms for determining the number of repetitions in a separate chapter.

Non-recursive algorithm

The above recursive algorithm can easily be turned into a non-recursive algorithm:

This function returns the correct result because  (respectively ) equals the desired result before and after every loop iteration

and we repeat the loop until . Unlike the variant on Wikipedia, the above algorithm wastes one group operation in the last iteration

when . On the other hand, we don’t have to handle the case where  separately. Since computers represent numbers in binary, you

can check whether  is odd with a bitwise and (typically written as n & 1 === 1) and divide  by  without having to subtract the least-

significant bit first by shifting the bits one to the right (typically written as n >> 1). Since I haven’t yet introduced any groups of interest, I will

provide an interactive tool for fast repetitions later on.

Group order
A group is finite if its set contains only a finite number of elements. The number of elements is then called the order of the group. If  is the set of

the group, its order is usually written as , which is the same notation as used to denote the cardinality of a set.

Notation for sets and elements

A set is a collection of distinct elements. When a variable is used to denote a set, it is often written in blackboard bold, such as  for the set of

integers,  for the set of real numbers, and  for the set of complex numbers. The symbol  is used to denote that  “is” an element of the

set , written as . I put “is” in quotation marks because the same notation is used when  is not an element of the set but rather a

variable which represents an element of the set. Sets are usually defined by enumerating all its elements within curly brackets, such as 

, or by specifying a criteria for its elements after a vertical bar, such as  for the set of integers greater than two.

Group order example

As we saw earlier, the hours of an analog clock form a finite group under addition. Using the above notations, we write the group as 

 and its order as .

Element order
If you keep repeating an element of a finite group, you will reach an earlier result again at some point because you run out of fresh elements. Let 

be the element that we repeat and  be the first element that we reach twice, which we can depict as follows:

function repeat(A,n) {

if (n < 0) {
A := A−1

n := −n

}
let B := I

while (n > 0) {
if (n   2 = 1) {

B := B ⋅ A

n := n − 1
}
A := A ⋅ A

n := n/2
}
return B

}

B ⋅ An B + nA

n = 0
n = 1 n = 0

n n 2

G
∣G∣

Z
R C ∈ A

G A ∈ G A

{1, 2, 3} {x ∈ Z ∣ x > 2}

G =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ∣G∣ = 12

A

B

Multiplicative Additive Both

%

Generic Multiplicative Additive All

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Control_flow#Loops
https://en.wikipedia.org/wiki/Exponentiation_by_squaring#With_constant_auxiliary_memory
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Bitwise_operation#AND
https://en.wikipedia.org/wiki/Bit_numbering#Bit_significance_and_indexing
https://en.wikipedia.org/wiki/Arithmetic_shift
http://localhost:4000/#interactive-tools
https://en.wikipedia.org/wiki/Finite_group
https://en.wikipedia.org/wiki/Order_(group_theory)
https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Element_(mathematics)
https://en.wikipedia.org/wiki/Blackboard_bold
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Element_(mathematics)#Notation_and_terminology
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Set-builder_notation
https://en.wikipedia.org/wiki/Bracket#Curly_bracket
https://en.wikipedia.org/wiki/Vertical_bar


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2710 / 92

If you reach  for the first time after repeating   times and again after repeating   times, then  repeated  times has to equal the

identity element because the identity element is the unique solution to . If we start with zero repetitions and thus the identity

element instead of , the identity element has to be the first element which we encounter again because as soon as ,  is smaller than 

, which means that you reach the identity element before you reach  for the second time. The smallest  which results in the identity

element when repeating   times is called the order of the element , written as :

In a finite group, every element has a finite order. Once you’ve reached the identity element, the elements repeat in the same order:

If  repeated  times results in the identity element, then  repeated  times has to result in the inverse element of :

This is the most intuitive way to understand why a right inverse is also always a left inverse and vice versa.

Element order examples

We can determine the order of every element in the group which corresponds to an analog clock by repeating each element:

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A Order |A|

0                       |0| = 1

1 2 3 4 5 6 7 8 9 10 11 0 |1| = 12

2 4 6 8 10 0             |2| = 6

3 6 9 0                 |3| = 4

4 8 0                   |4| = 3

5 10 3 8 1 6 11 4 9 2 7 0 |5| = 12

6 0                     |6| = 2

7 2 9 4 11 6 1 8 3 10 5 0 |7| = 12

8 4 0                   |8| = 3

9 6 3 0                 |9| = 4

10 8 6 4 2 0             |10| = 6

11 10 9 8 7 6 5 4 3 2 1 0 |11| = 12

The order of each element in the additive group of integers modulo 12.

(You can set the modulus to an arbitrary value in a tool below.)

Why do we need invertibility as an axiom?

E ∘    ∘  

m times = B

 A ∘ A ∘ … ∘ A 

n−m times = E

 A ∘ … ∘ A

n times = B

B Am An A n − m

B ∘ X = B

A m > 0 n − m

n B n > 0
An A ∣A∣

 =
∣A∣ times

 A ∘ … ∘ A E

 ∘ 
 ∘  ∘  ∘ … ∘  

A

 

↓
A

B

 

↓
A

C

 

↓
A

E

 

↓
A

∣A∣ times

 ∘

A

 

↓
A  ∘

B

 

↓
A  ∘

C

 

↓
A …

A ∣A∣ A ∣A∣ − 1 A

A ∘  =
∣A∣−1 times

 A ∘ … ∘ A A ∘ =A  ∘
∣A∣−1 times

 A ∘ … ∘ A A = ∘A A = E

Generic Multiplicative Additive All

Generic Multiplicative Additive All

Generic Multiplicative Additive All

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Order_(group_theory)


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2711 / 92

Since you get the inverse of any element  in any finite group simply by repeating , you may wonder why we require each element to have

an inverse in the group as one of our axioms. The reason for this is that without invertibility,  can have several solutions, which

means that you can get stuck in a loop which doesn’t involve the identity element. (To see this happening, set the modulus to a composite

number in the repetition table of multiplicative groups below.) Instead of requiring that each element has an inverse, we can require that 

 and  have a unique solution for any elements  and  of the group. This is an alternative definition of a group and

makes even the identity axiom redundant, as we’ll see later.

Group generators
If an element reaches every element of the group before coming to the identity element when it is repeated, the element is said to generate the

group. Such an element is called a generator and usually denoted as . A group can have several generators or no generator. By definition, the

order of each generator equals the order of the group: . The set generated by an element  is usually written with angle brackets as 

. Also by definition, the set generated by a generator is the whole group: .

Group generators example

As shown in a previous box, the elements , , , and  generate the additive group modulo 12: .

Cyclic groups
A group with a generator is called cyclic because all its elements can be reached in a single cycle when repeating the generator :

G0 
G1 

G2 

G3 

G4 
…

G−4 

G−3 

G−2 

G−1 

𝔾

Repeating the generator G using the multiplicative notation.

Since every element can be written as a repetition of , the group operation and element inversion can be performed as follows:

Therefore, cyclic groups are commutative because the addition of the integers in the repetition of the generator is commutative:

Even number of generators

Repeating the inverse of  generates the group in the opposite direction because the inverse undoes one repetition at a time:

As a consequence, every cyclic group with more than two elements has an even number of generators because the inverse of every generator

is also a generator. (Since each inverse is unique and the inverse of each inverse is the original element again, two different generators cannot

have the same inverse — and a generator can equal its inverse only for groups of order 2.)

Cyclic group example

A A

X ∘ A = B

X ∘ A = B A ∘ Y = B A B

G

∣G∣ = ∣G∣ A ⟨A⟩
G = ⟨G⟩

1 5 7 11 G = ⟨1⟩ = ⟨5⟩ = ⟨7⟩ = ⟨11⟩

G

G

Let  and  be arbitrary elements, then  and .A = Ga B = Gb A ⋅ B = G ⋅a G Gb a+b A =−1 (G ) (G ) Ga −1 −1 a −a

Let  and  be arbitrary elements, then .A = Ga B = Gb A ⋅ B = G ⋅a G =b G =a+b G =b+a G ⋅b G =a B ⋅ A

G

G =i G =∣G∣−(∣G∣−i)
 ⋅

= I

 G∣G∣ (G ) =−1 ∣G∣−i (G )−1 ∣G∣−i

Multiplicative Additive Both

= = =

Multiplicative Additive Both

Multiplicative Additive Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Generating_set_of_a_group
https://en.wikipedia.org/wiki/Bracket#Angle_brackets
https://en.wikipedia.org/wiki/Cyclic_group


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2712 / 92

The group defined by an analog clock is cyclic and has an even number of generators, namely , , , and .

Subgroups
A group  is a subgroup of another group  if every element of  is also an element of  and they have the same operation. Since a group must

have an identity element and the identity element is defined by the operation, the subgroup  has to include the same identity element as the

supergroup . Given that the identity element results in itself when it is combined with itself, every group has a trivial subgroup, which contains

only the identity element. Since associativity is a property of the operation and not of the elements, a subgroup satisfies this axiom simply by using

the same operation as its supergroup. What has to be verified, though, is that the elements of the subgroup are closed under the group operation.

If this is the case and the subgroup is non-empty and finite, the identity element and all inverses are guaranteed to be included as you reach them

by repeating the corresponding element. Any element  of  generates a cyclic subgroup, which is denoted as . Generated subsets are always

closed because combining repetitions of  results in another repetition of . If  does not generate all elements of , then  is a proper

subgroup of .

Subgroup examples

The group defined by an analog clock, which consists of the elements , has the following subgroups: , 

, , , , and . Any other subset of ,

such as , is not closed. (As we’ll see later, all subgroups of cyclic groups are cyclic.)

Notation for the subgroup relation

As you may have noticed, I began to denote a group by its set in this section. The subgroup relation is usually written as  (or as 

if ) instead of  because not every subset of elements forms a subgroup.

Intersection of subgroups is a subgroup

Given two subgroups  and  of a group , their intersection  is also a subgroup of  because:

 is not empty because the identity element  of  is included in both  and . Therefore, .

 is closed because for any elements  and  in ,  and  belong to both  and . 

Since  and  are closed,  and . Therefore, .

On the other hand, the union of two subgroups is generally not a subgroup.

Subgroup cosets
If you combine each element of a subgroup  with a fixed element  of the supergroup , you get a coset of , which is written as:

If the group operation is commutative, the right coset and the left coset of a subgroup  and an element  are the same. If the element 

belongs to the subgroup , the right coset and the left coset equal the subgroup itself due to closure:

Any two right cosets and any two left cosets are either equal or disjoint. Given arbitrary elements , there are two cases:

1 5 7 =  12 −5 11 =  12 −1

H G H G
H

G

A G
A A A G ⟨A⟩

G

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} {0}
{0, 6} {0, 4, 8} {0, 3, 6, 9} {0, 2, 4, 6, 8, 10} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

{0, 1, 2, 3}

H ≤ G H < G
H = G H ⊆ G

H  1 H  2 G H = H  ∩1 H  2 G

H E G H  1 H  2 E ∈ H

H A B H A B H  1 H  2

H  1 H  2 A ∘ B ∈ H  1 A ∘ B ∈ H  2 A ∘ B ∈ H

H A G H

Right coset: ,

Left coset: .

H ∘ A = {H ∘ A ∣ H ∈ H}

A ∘H = {A ∘ H ∣ H ∈ H}

H A ∈ G A

H

H ∘ A = H = A ∘H

A,B ∈ G

1. If , then  

because  for some , and thus for every element , there’s an  so that 

, where  due to closure, and thus . So far, we have just shown that .

Since , we have that , and thus . This implies that  for the same reason as before.

Therefore, .

B ∈ H ∘ A H ∘ A = H ∘ B
B = H  ∘B A H  ∈B H C ∈ H ∘ B H  ∈C H C = H  ∘C B = H  ∘C

(H  ∘B A) = (H  ∘C H  ) ∘B A H  ∘C H  ∈B H C ∈ H ∘ A H ∘ B ⊆ H ∘ A
B = H  ∘B A A =  ∘H  B B A ∈ H ∘ B H ∘ A ⊆ H ∘ B

H ∘ A = H ∘ B

⟨A⟩

Generic Multiplicative Additive All

Generic Multiplicative Additive All

Generic Multiplicative Additive All

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Subgroup
https://en.wiktionary.org/wiki/supergroup
https://en.wikipedia.org/wiki/Trivial_group
https://en.wikipedia.org/wiki/Subgroup#Subgroup_tests
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Relation_(mathematics)
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Subgroup#Basic_properties_of_subgroups
https://en.wikipedia.org/wiki/Coset
https://en.wikipedia.org/wiki/Disjoint_sets


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2713 / 92

As different  are mapped to different elements in every coset, all cosets contain the same number of elements, namely .

Subgroup cosets example

Given the group  with addition modulo 12, which corresponds to an analog clock, the subgroup 

 has the following cosets: , , , , and so on.

(You can generate all cosets of a cyclic subgroup below.) It’s easy to verify that these subgroup cosets are either equal or disjoint as proven

above. For example, , whereas .

Lagrange’s theorem
Lagrange’s theorem states that for any finite group , the order of every subgroup  of  divides the order of . In other words, if  is a

subgroup of ,  is a multiple of . Since each element  belongs to a coset of  ( ) and all cosets of  are either equal or

disjoint and contain the same number of elements, the cosets of  split the group  into subsets of equal size:

ℍ

ℍ ∘ A

ℍ ∘ B

⋮

𝔾

The cosets of  form a partition of the supergroup  

(i.e. every element of  is included in exactly one coset).

Since  is a coset of , it follows that  divides . This theorem is named after Joseph-Louis Lagrange (1736 − 1813).

Lagrange’s theorem has several important consequences:

1. The order of every element  in  divides the order of  because  generates the subgroup , where .

2. Any element  in  repeated  times equals the identity element because with  for some integer :

3. Every group of prime order is cyclic, and every element except the identity element is a generator. (Given a group  where  is prime, the

order of every  has to be  or . If its order is ,  is the identity element. If its order is ,  is a generator.)

Lagrange’s theorem example

We determined the order of every element in the group which corresponds to an analog clock earlier. It’s easy to verify that the order of

each element divides the group’s order. Since these generated subgroups are the only possible subgroups as explained later on, the order of

every subgroup divides the group’s order. And since  is a multiple of  for any element , we have that  for all elements of the

group as implied by the second consequence of Lagrange’s theorem.

Index and cofactor

Given a group  and a subgroup , the ratio  is called the index of the subgroup or the cofactor in the case of elliptic curves.

Proof without cosets for commutative groups

2. If , then  (the intersection of the two cosets results in the empty set) 

because an overlap would mean that for some element , there are  so that . But in this case, 

, which contradicts the premise of the second case.

B ∈/ H ∘ A H ∘ A ∩H ∘ B = ∅
C H  ,H  ∈A B H C = H  ∘A A = H  ∘B B B =

∘H  B (H  ∘A A) = (  ∘H  B H  ) ∘A A ∈ H ∘ A

H ∈ H ∣H∣

G = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} H =
{0, 3, 6, 9} H+ 0 = {0, 3, 6, 9} H+ 1 = {1, 4, 7, 10} H+ 2 = {2, 5, 8, 11} H+ 3 = {3, 6, 9, 0}

H+ 0 = H+ 3 H+ 1 ∩H+ 2 = ∅

G H G G H
G ∣G∣ ∣H∣ A ∈ G H A ∈ H ∘ A H

H G

H G
G

H H ∣H∣ ∣G∣

A G G A ∣⟨A⟩∣ = ∣A∣

A G ∣G∣ ∣G∣ = ∣A∣ ⋅ n n

A =∣G∣ A =∣A∣⋅n (A ) =∣A∣ n I =n I

G ∣G∣
A ∈ G 1 ∣G∣ 1 A ∣G∣ A

12A 12 A 12A =  12 0

G H  ∣H∣
∣G∣

⟨A⟩

Multiplicative Additive Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(group_theory)
https://en.wikipedia.org/wiki/Multiple_(mathematics)
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Joseph-Louis_Lagrange
https://en.wikipedia.org/wiki/Index_of_a_subgroup
https://en.wikipedia.org/wiki/Cofactor
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Empty_set
https://en.wikipedia.org/wiki/Proof_by_contradiction
https://en.wikipedia.org/wiki/Premise


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2714 / 92

If we restrict our attention to commutative groups, there’s a much simpler proof for why you get the identity element when you repeat an

element of such a group as many times as there are elements in the group. (I found this proof on page 34 of Victor Shoup’s book.) Since you

get different results when you combine an element  with two different elements  and ,  is an invertible function. This

means that  is a permutation, and thus . Using Greek letters to iterate over all the elements of a

commutative group, we can observe the following:

You can replace  with  and aggregate all  outside the loop only if the operation of the group is commutative. The order of every

element has to divide the order of the group because it cannot be larger and you wouldn’t get the identity element if  was not a multiple of

. To make similar statements about non-commutative groups and non-cyclic subgroups, you still need Lagrange’s theorem with its cosets.

This is probably why this proof is not more popular; but it is enough for our purposes.

Modular arithmetic
Before we can look at some examples of finite groups, we have to learn about modular arithmetic first.

Euclidean division
Integers aren’t closed under division, but you can divide any two integers with a remainder, which is known as Euclidean division. Given a positive

integer , every integer  can be written as , where  and  are integers and . In this equation,  is called the dividend

(the quantity to be divided),  is called the divisor (the quantity which divides),  is called the quotient (how many times the divisor is included in

the dividend), and  is called the remainder (the quantity which is left over).

Since the divisor  splits the number line into equal sections, the quotient  and the remainder  are unique:

q · d r

0 d 2d q · d (q + 1)d…

+ = n

The divisor  divides the number line for positive integers.

Personally, I’m satisfied with this geometric argument. You find a more formal proof for the existence and the uniqueness of  and  on Wikipedia.

Since we are interested in positive divisors only, I didn’t bother to define Euclidean division for a negative . What we do care about, though, is

that the remainder  is non-negative (i.e. greater than or equal to zero) even if the integer  is negative:

0–d–2d(q + 1)dq · d …

q · d + r = n

The divisor  also divides the number line for negative integers.

Divisor

An integer  which divides another integer  without a remainder is a co-called divisor of . This is usually written as , which means that

there is an integer  so that . In this context, the term “divisor” is used differently than in the Euclidean division above.

Modulo operation
The modulo operation returns the remainder of Euclidean division. The divisor of the division is also called the modulus (a small measure or

interval) of the operation. The modulo operation is typically written as  or , where  is the dividend and  is the modulus. For

example, . Many calculators, including Google Search and Apple Spotlight, support the modulo operation in both notations but struggle

if you make the numbers large enough (because some use floating-point arithmetic). Since we want to perform calculations with very large

integers in cryptography, it’s time for the first interactive tool of this article:

A B  1 B  2 f(X) = A ∘ X
f(X) f(G) = {f(B) ∣ B ∈ G} = G

 B =
B∈G
∏  f(B) =

B∈G
∏  A ⋅

B∈G
∏ B = A ⋅∣G∣ (  B)

B∈G
∏

After canceling   B on both sides, we have that I =
B∈G
∏ A .∣G∣

B f(B) A

∣G∣
∣A∣

d > 0 n n = q ⋅ d + r q r 0 ≤ r < d n

d q

r

d q r

d

q r

d

r n

d

d n n d ∣ n
c c ⋅ d = n

n mod m n % m n m

8 % 3 = 2

Multiplicative Additive Both

https://ef1p.com/number-theory/
https://shoup.net/ntb/ntb-v2.pdf
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Control_flow#Loops
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Remainder
https://en.wikipedia.org/wiki/Euclidean_division
https://en.wiktionary.org/wiki/dividend
https://en.wiktionary.org/wiki/divisor
https://en.wiktionary.org/wiki/quotient
https://en.wiktionary.org/wiki/remainder
https://en.wikipedia.org/wiki/Number_line
https://en.wikipedia.org/wiki/Euclidean_division#Proof
https://en.wikipedia.org/wiki/Sign_(mathematics)#non-negative_and_non-positive
https://en.wikipedia.org/wiki/Divisor
https://en.wikipedia.org/wiki/Modulo_operation
https://en.wiktionary.org/wiki/modulus#Latin
https://en.wikipedia.org/wiki/Modulo_operation#Notation
https://en.wikipedia.org/wiki/Google_Search
https://en.wikipedia.org/wiki/Spotlight_(software)
https://en.wikipedia.org/wiki/Floating-point_arithmetic
http://localhost:4000/#interactive-tools


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2715 / 92

Integer: 15 Modulus: 12

Integer: 15

Modulus: 12

Remainder: 3

Modulo in programming languages

In many programming languages, including C, C++, Go, Java, and JavaScript, the % operator does not compute the remainder as presented

here. Instead, these languages round the quotient towards zero and allow the remainder to be negative, which is listed as truncated division

on Wikipedia. For example, -7 % 2 == -1, which means that you cannot test whether a potentially negative integer is odd by using n % 2
== 1. For the quotient, this behavior is probably desirable, which is why signed division is implemented like this in the IDIV instruction of the

x86 instruction set. The situation becomes even more complicated if you allow the divisor/modulus to be negative.

Equivalence relation
When two numbers have the same remainder, we say that they are equivalent up to a multiple of the modulus, which means that their difference

is a multiple of the modulus. Given the numbers  and , this is usually written in one of the following two ways:

I prefer the latter to the former because it makes it clearer that the aspect which is affected by the modulus is the comparison of the two numbers.

The second notation is also more flexible as it allows us to use the modular comparison and the ordinary equality in a single line. Since the third

dash increases the load on our eyes (similar to visual pollution) without any benefits, I will simply write:

The reason for not dropping the modulus in the subscript of the equals sign as well is that the modulus is a useful reminder of whether we perform

a computation with simple numbers in the modular group or the repetition ring. If a computation is performed with something else, such as points

or polynomials, we will leave the meaning of the equals sign to the context in which it is used.

We have now five different ways to express the same relation between two integers  and :

Equality of remainders is an equivalence relation, which is defined by the following three properties given any numbers , , and :

Reflexivity: .

Symmetry: If , then .

Transitivity: If  and , then .

These properties are satisfied when considering only the remainder of numbers because the remainder is unique for every number.

Congruence relation
The above equivalence relation is compatible with addition and multiplication in the sense that equivalent inputs yield equivalent outputs: For

any integers , , , and  so that  and  (i.e.  and  for some integers  and ), we have

that

 because , and

 because .

An equivalence relation which is compatible with the operations of interest is a congruence relation. Calculating modulo  therefore means that

we can eliminate multiples of  without affecting the equivalence relation. Since only the remainders are relevant, we can – and will – represent

all numbers by their unique remainder. Instead of reinterpreting what it means to be equal, we could just as well overload the operators so that 

 and . This is an adequate way to think about modular arithmetic and also how I implemented the

following tools. Regarding notation, it’s better to keep the modulus next to the equals sign, though, because it makes longer expressions easier to

read. Moreover, some operations, such as modular exponentiation, are written without an operator to which the modulus could be attached.

Additive groups

   

a b

  

a

or a

≡ b (mod m)

≡  bm

a =  m b

a b

a % m = b % m ⟺ a =  m b ⟺ (a − b) % m = 0 ⟺ m (a − b) ⟺ a = b + c ⋅ m for some integer c

a b c

a =  m a

a =  m b b =  m a

a =  m b b =  m c a =  m c

a  1 a  2 b  1 b  2 a  =  1 m a  2 b  =1 m b  2 a  =1 a  +2 c ⋅a m b  =1 b  +2 c  ⋅b m c  a c  b

a  +1 b  =  1 m a  +2 b  2 a  +1 b  =1 (a  +2 c  ⋅a m) + (b  +2 c  ⋅b m) = (a  +2 b  ) +2 (c  +a c  ) ⋅b m

a  ⋅1 b  =  1 m a  ⋅2 b  2 a  ⋅1 b  =1 (a  +2 c  ⋅a m) ⋅ (b  +2 c  ⋅b m) = (a  ⋅2 b  ) +2 (a  ⋅2 c  +b c  ⋅a b  +2 c  ⋅a c  ⋅b m) ⋅ m

m

m

a +  m b = (a + b) % m a ⋅  m b = (a ⋅ b) % m

∣

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Modulo_operation#In_programming_languages
https://en.wikipedia.org/wiki/Modulo_operation#Common_pitfalls
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Equality_(mathematics)
https://en.wikipedia.org/wiki/Visual_pollution
https://en.wikipedia.org/wiki/Subscript_and_superscript
https://en.wikipedia.org/wiki/Equals_sign
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Relation_(mathematics)
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Reflexive_relation
https://en.wikipedia.org/wiki/Symmetric_relation
https://en.wikipedia.org/wiki/Transitive_relation
https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Congruence_relation
https://en.wikipedia.org/wiki/Operator_overloading
https://github.com/KasparEtter/ef1p/tree/main/code/math
https://en.wikipedia.org/wiki/Modular_exponentiation


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2716 / 92

After having gone through quite a bit of theory, the time has finally come to see some finite groups in action. The integers modulo some integer 

form a commutative group under addition. As explained in the previous chapter, you can either define the set of the group to contain all the

integers and redefine what it means to be equal, or restrict the set of elements to  and redefine addition as 

. The latter is usually preferred because it makes the representation of elements unique. The number of elements is given by the modulus 

. It’s easy to see why addition modulo  satisfies the four group axioms:

Closure: Every integer has a remainder between  and  (both inclusive). It’s not possible to leave the set of elements.

Associativity: Since reducing intermediate results to their remainder doesn’t change the result, addition remains associative.

Identity: The number  is the only identity element. For any number , we have that .

Invertibility: The inverse of any number  is  because .

The combinations of elements can be displayed in an operation table and the repetitions of each element in a repetition table.

Operation table
An operation table is a mathematical table which lists the results of combining any two elements with a binary operation. If the table is exhaustive,

it defines the operation by enumeration. You likely had to learn the multiplication table up to a factor of 10 by heart in primary school, and you

might also be familiar with truth tables, which are used to define truth functions. In the case of groups, an operation table is also called a group

table, a composition table, or a Cayley table, named after Arthur Cayley (1821 − 1895). Just to be clear, an operation table has nothing to do with

an operating table.

The following tool allows you to generate the operation table for all additive groups up to a modulus of 100:

Modulus: 10 Next prime Previous prime Coprime: Composite:

All the elements which are coprime with the modulus are highlighted with a green background in the first row and the first column. We’ll discuss

the properties of operation tables when we look at multiplicative groups, where the tables are a bit more interesting.

Repetition table
Most of the introduction to group theory was about combining the same element with itself repeatedly. We learned that the identity element is

reached before another element occurs twice and that this element order divides the group order. You can observe both properties for moduli up

to 100 in the tool below, where each element is repeated in a separate row until it reaches the identity element. Such tables aren’t commonly used

to visualize Lagrange’s theorem and other properties, such as the number of generators. I call them repetition tables, but feel free to refer to them

as Etter tables. 😉

Modulus: 10 Next prime Previous prime Coprime: Repeat: Order: Totient:

m

{0, 1, … ,m − 1} A +  m B = (A +
B)   m
m m

0 m − 1

0 A A + 0 = 0 + A = A

A m − A A + (m − A) =  m 0

   

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 0

2 2 3 4 5 6 7 8 9 0 1

3 3 4 5 6 7 8 9 0 1 2

4 4 5 6 7 8 9 0 1 2 3

5 5 6 7 8 9 0 1 2 3 4

6 6 7 8 9 0 1 2 3 4 5

7 7 8 9 0 1 2 3 4 5 6

8 8 9 0 1 2 3 4 5 6 7

9 9 0 1 2 3 4 5 6 7 8

   

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A

0

1 2 3 4 5 6 7 8 9 0

%

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Addition#Associativity
https://en.wikipedia.org/wiki/Addition#Identity_element
https://en.wikipedia.org/wiki/Mathematical_table
https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Enumeration
https://en.wikipedia.org/wiki/Multiplication_table
https://en.wikipedia.org/wiki/Primary_school
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Cayley_table
https://en.wikipedia.org/wiki/Arthur_Cayley
https://en.wikipedia.org/wiki/Operating_table
http://localhost:4000/#about


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2717 / 92

The first row indicates how many times the element in the first column was repeated. (Remember that repeated addition is written as

multiplication.) The tool highlights all the repetitions which divide the number of elements in the group with a blue background. These are the

columns in which the identity element can be reached in the repetitions below. You can increase and decrease the modulus by pressing the up and

down arrow keys of your keyboard when the cursor is in the input field.

In the case of additive groups, the following properties are easy to understand even if you don’t know anything about group theory:

Group order: A multiple of the modulus is obviously congruent to zero, i.e.  for any number . This was also one of the consequences

of Lagrange’s theorem. You can observe it in the repetition table above by enabling “Repeat”.

Prime modulus: If the modulus  is prime, you won’t get a multiple of  until you repeat any element except zero  times. Since you cannot

hit some element twice before reaching the identity element, all elements except zero generate the whole group.

Cyclic groups: Additive groups modulo some number are always cyclic because the number 1 always generates the whole group.

Gray element: If the modulus  is even, the element  has an order of two. An order of two means that  is its own inverse. All other

elements except zero have an order greater than two because for all elements , we have that , and for all elements , we

have that . Thus, whenever an element has an even order (which can be the case only if  is even), you reach  halfway to the

identity element. To make it easier to see this, the tool marks  with a gray background.

You can ignore the additional options of the tool for now; we’ll make use of them later on.

Subgroup cosets
As we learned above, the order of every subgroup divides the order of the group because the cosets of a subgroup are either equal or disjoint and

all elements of the group belong to a coset of a particular subgroup. The following tool demonstrates this for additive groups modulo some

number. The first row contains the elements of the subgroup which is generated by the given element. It corresponds to the row of the given

element in the group’s repetition table with the difference that the identity element comes first instead of last. The second row contains the

elements of the first row incremented by one, the third row contains the elements of the first row incremented by two, and so on. The reason why

I put the identity element into the first column is to make it easy to recognize which coset is represented by a particular row.

Modulus: 9 Next prime Previous prime Element: 3 Unique: Delay: 0.5

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A

2 4 6 8 0

3 6 9 2 5 8 1 4 7 0

4 8 2 6 0

5 0

6 2 8 4 0

7 4 1 8 5 2 9 6 3 0

8 6 4 2 0

9 8 7 6 5 4 3 2 1 0

mA =  m 0 A

m m m

m  2
m

 2
m

A <  2
m 2A < m A >  2

m

m < 2A < 2m m  2
m

 2
m

   

0 3 6

1 4 7

2 5 8

3 6 0

4 7 1

5 8 2

6 0 3

7 1 4

8 2 5

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Arrow_keys
https://en.wikipedia.org/wiki/Cursor_(user_interface)
https://en.wikipedia.org/wiki/Text_box


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2718 / 92

For example, setting the modulus to 9 and the element to 3, the first row is , the second row is 

, and so on. If the element in the first column appears in another row, then the elements in these two rows are identical, they just

appear in a different order. If the element in the first column does not appear in another row, then the two rows have no elements in common. You

can filter all the rows whose elements already appeared in the table by enabling “Unique”. In order to make it easier to spot that each element

appears exactly once when “Unique” is enabled, the elements of the group are highlighted with a blue background one after the other. You can

disable this animation by setting the delay to 0.

Visualization of cosets

For additive groups modulo some number, even the fact that a group is partitioned by subgroup cosets is somewhat intuitive:

+3

0

1

2

3

45

6

7

8

The subgroup generated by the element 3 in red 

with the two disjoint cosets in orange and yellow.

Admittedly, this is the simplest possible case. What happens if you don’t hit  in the first pass and have to do more loops? If you repeat an

element from the left side of the circle, then you just reach the elements in the opposite order (e.g.  and ).

For a more sophisticated example, let’s look at the additive group modulo 14 with the element 6:

+6

0
1

2

3

4

5

6
7

8

9

10

11

12

13

The subgroup generated by the element 6 in red 

with the only disjoint coset in orange.

As you can see in the above graphic, the distance between adjacent elements of the subgroup is always the same. This has to be the case

because repeating an element generates a cyclic subgroup, which is closed. As a consequence, the difference between the two closest

elements is itself an element. (If we denote the closest elements as  and , then  is also an element of the subgroup due to

closure.) This difference can then be added and subtracted from all other elements. If this leads to an even smaller gap, you repeat this

procedure until the subgroup is closed. If the original element does not generate the whole group, you get a disjoint coset when you rotate

the generated subgroup by one. As we’ll see later, the difference between adjacent elements of the generated subgroup equals the greatest

common divisor of the generating element and the modulus, and the first time you hit zero again corresponds to the least common multiple

of these two numbers.

Group notations
The additive group of integers modulo some number  is usually denoted as  or . (By convention,  stands for the set of all integers.

The letter comes from the German word for numbers, which is Zahlen.) The former notation refers to the additive group of the quotient ring 

. Since the second notation is also used for a different mathematical concept, mathematicians typically prefer the former, whereas

cryptographers tend to settle for the latter.

Multiplicative groups

= {0, 3, 6} ⟨3⟩ + 1 = {0 + 1 = 1, 3 + 1 =
4, 6 + 1 = 7}

0
(6 + 6) % 9 = 3 (3 + 6) % 9 = 0

A B B + (−A)

m (Z/mZ)+ Z  m
+ Z

Z/mZ

⟨3⟩

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Integer
https://en.wiktionary.org/wiki/Zahlen
https://en.wikipedia.org/wiki/P-adic_number#p-adic_integers


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2719 / 92

The integers modulo some integer  can also be combined using multiplication, which results in the so-called multiplicative group of integers

modulo . Since equivalence up to a multiple of  is preserved also under multiplication, it’s easy to see why modular multiplication is still

associative. It’s also rather obvious that the number  is the identity element because for any number , . Since there is no

number  for which ,  has to be excluded from the set of elements. What remains to be seen is which other numbers below the

modulus have an inverse and why the group is closed if the numbers without an inverse are excluded. The short answer is that integers have a

multiplicative inverse if and only if the only factor in common with the modulus is . We will see in the next chapter why this is the case. For now,

just be aware that the following tools do not always display groups. If the modulus is not prime, you have to enable the “coprime filter” to get a

group. This is the reason why prime numbers play such an important role in number theory and cryptography.

If and only if

Given two statements  and , “  if and only if ” means that either both statements are true or neither of them is. In other words,  is

necessary and sufficient for  (and the other way around), which means that each statement implies the other. In formulas, this so-called

material equivalence is usually written as , which is a binary truth function with the following truth table (using  for true and  for

false):

The definition of .

Operation table
The following tool allows you to generate the operation table for all multiplicative groups up to a modulus of 100:

Modulus: 11 Next prime Previous prime Coprime: Zero: Composite:

Operation tables of groups, which are also known as Cayley tables, have some interesting properties. I limited the modulus to 100 not because

these properties no longer hold for larger moduli but because the operation table becomes unwieldy way before that.

Symmetries

The table is symmetric along the diagonal axis from the upper left corner to the lower right corner if and only if the operation is commutative and

the elements are listed in the same order in both dimensions. All the groups that we are interested in are commutative. If the operation is not

commutative, the convention is that the first element determines the row and the second element determines the column of the table. If you play

with the above tool, you notice that the table is also symmetric along the diagonal axis from the lower left corner to the upper right corner. The

m

m m

1 A A ⋅ 1 = 1 ⋅ A = A

B 0 ⋅ B =  m 1 0

1

P Q P Q P

Q

⟺ ⊤ ⊥

P Q P ⟺ Q

⊥ ⊥ ⊤

⊥ ⊤ ⊥

⊤ ⊥ ⊥

⊤ ⊤ ⊤

⟺

   

· 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 1 3 5 7 9

3 3 6 9 1 4 7 10 2 5 8

4 4 8 1 5 9 2 6 10 3 7

5 5 10 4 9 3 8 2 7 1 6

6 6 1 7 2 8 3 9 4 10 5

7 7 3 10 6 2 9 5 1 8 4

8 8 5 2 10 7 4 1 9 6 3

9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Necessity_and_sufficiency#Simultaneous_necessity_and_sufficiency
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Truth_function#Table_of_binary_truth_functions
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Tee_(symbol)
https://en.wikipedia.org/wiki/Up_tack
https://en.wikipedia.org/wiki/Cayley_table
https://en.wikipedia.org/wiki/Cayley_table#Structure_and_layout


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2720 / 92

reason for this is that the product of two negative numbers is the same as the product of the corresponding positive numbers: 

. This second symmetry is specific to multiplicative groups, which you can verify by going back to the

additive groups.

Permutations

The group axioms imply that  and  have unique solutions for any elements  and  of the group. This means that each row

and column of a group’s operation table may contain each element only once. Otherwise, the solution is not unique:

∘ ⋯ X ⋯ X ⋯

⋮ ⋮ ⋮

A ⋯ B ⋯ B ⋯

⋮ ⋮ ⋮

A row (or column) may not contain the same element twice as 

 would have more than one solution otherwise.

Due to closure, each combination of two elements results in another element. Therefore, none of the cells may be empty and each row and

column has to contain each element exactly once. In other words, the rows and columns are permutations of the group’s elements and the

operation table forms a so-called Latin square, where each symbol occurs exactly once in each row and column.

Identity row and column

Since groups have an identity element, one of the rows has to match the column headers and one of the columns has to match the row headers.

Put differently, the identity permutation, which maps every element of the group to itself, has to be included in the permutations of the rows and

the columns. If the elements are listed in the same order along the vertical and the horizontal axis of the table, the identity row intersects the

identity column on the diagonal from the upper left corner to the lower right corner because the identity element equals itself when it is

combined with itself. (This property is called idempotence.)

Latin square + associativity = group

Being a Latin square is not a sufficient condition to form a group, which can be demonstrated with the following example:

∘ A B C

A B A C

B A C B

C C B A

This operation does not form a group.

This table lacks an identity row and column, but more importantly, the operation is not associative. For example, ,

whereas . Since associativity makes a statement about three elements and not just two, it is difficult to spot

whether an operation is associative based on its table. If an operation defined by a Latin square is associative, it does form a group, though. In

order to understand why this is the case, we need to understand why an associative operation with unique solutions implies that the identity

element is the same for all elements.

Since every column of the operation table is a permutation of the group’s elements, every element has to appear in its own column. This

means that for every element , there exists an element  so that . By applying this element on both sides from the left, we get 

. Due to associativity, . Since  has a unique solution, . In other words,

every identity for a single element is idempotent. What remains to be seen is that an idempotent element is an identity for all elements.

For any element ,  has a unique solution. Since ,  and thus . Using the fact that 

, it follows that  is the unique solution for . This is why an identity for one element is an identity for all elements.

The identity element is unique because  would have two solutions otherwise. The same argument can be used to show that the

right identity is also unique. The left identity  and the right identity  are the same because they are identities for each other: 

. Since you can get from any element to any other element in a Latin square, you can get to the unique identity from any

element, which means that each element has an inverse.

A ⋅ B = B ⋅ A =
(−B) ⋅ (−A) =  m (m − B) ⋅ (m − A)

A ∘ X = B Y ∘ A = B A B

1 2

A ∘ X = B

(A ∘ B) ∘ C = A ∘ C = C

A ∘ (B ∘ C) = A ∘ B = B

D E E ∘ D = D

E ∘ (E ∘ D) = E ∘ D (E ∘ E) ∘ D = E ∘ D X ∘ D = D E ∘ E = E

F E ∘ X = F E ∘ E = E (E ∘ E) ∘ X = F E ∘ (E ∘ X) = F

E ∘ X = F F E ∘ X = F

X ∘ F = F

E  L E  R E  =L

E  ∘L E  =R E  R

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Pigeonhole_principle#Alternative_formulations
https://en.wikipedia.org/wiki/Permutation
https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/Permutation_group#Neutral_element_and_inverses
https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/Necessity_and_sufficiency#Sufficiency
https://en.wikipedia.org/wiki/Cayley_table#Associativity


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2721 / 92

We have shown that any associative operation which generates a Latin square forms a group. I cover an alternative proof for these

alternative group axioms in the last chapter.

Fixing the group of order 3

Before we continue, let’s fix the above operation table by starting with the necessary identity row and column:

∘ A B C

A A B C

B B ? ?

C C ? ?

A skeleton for a group of order 3.

We may try to complete the operation table by setting  to , but this would lead to a conflict in the third row and column:

∘ A B C

A A B C

B B A !

C C ! ?

This cannot be completed to a Latin square.

Given that  has to occur in the middle row and column and cannot occur a second time in the last row and column, it has to be that 

. Another reason for this is that  makes the order of  2 since  is the identity element; but this violates Lagrange’s

theorem, which implies that the order of any element divides the order of the group. Therefore:

∘ A B C

A A B C

B B C A

C C A B

The only group of order 3.

Since there was no other way to complete the operation table, this is the only group of order 3. In fact, all groups of prime order are unique

up to a relabeling of the elements because as we saw earlier, groups of prime order are cyclic, and as we will see later, all cyclic groups of the

same order behave identically. This particular group corresponds to the additive group modulo 3.

If you enjoy solving Sudokus, you might also enjoy solving the operation table for groups of higher order. For example, there are two

solutions for groups of order 4. Can you find them? And can you prove that these are the only two groups of order 4? 🤓

Repetition table
The following tool repeats the elements of the multiplicative group modulo the given modulus similar to the additive groups above:

Modulus: 11 Next prime Previous prime Coprime: Repeat: Order: Totient:

11 is prime

B ∘ B A

C B ∘
B = C B ∘ B = A B A

   

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

1

2 4 8 5 10 9 7 3 6 1

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/List_of_small_groups#List_of_small_abelian_groups
https://proofwiki.org/wiki/Groups_of_Order_4


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2722 / 92

As noted earlier, you have to enable “Coprime” to exclude the numbers which don’t have an inverse and therefore don’t belong to the group if the

modulus isn’t prime. Multiplicative groups are different from additive groups in several regards:

Non-cyclic groups: Not all multiplicative groups are cyclic. For example, the multiplicative groups modulo 8, 12, and 15 have no generator. As

we’ll discuss later, all multiplicative groups modulo a prime number are cyclic, though.

Square root of one: If a multiplicative group is cyclic and the modulus  is greater than two, then  is the only element with an order of

two. (  is congruent to , and .) The element  is marked with a gray background. Whenever the order of an element in a

cyclic group is even, you encounter  at half its order. No other element can have an order of two as the group wouldn’t be cyclic

otherwise. As mentioned in the previous point, not all multiplicative groups are cyclic. When calculating modulo 24, for example, all elements

except the identity element have an order of two and are thus their own inverse.

Subgroups of prime order: You cannot construct a group with a prime order greater than two with the above tool because the number of

coprime elements below any modulus is always even. When a prime order is desirable for cryptographic applications, you have to resort to

subgroups. For example, many elements generate a subgroup of order 11 when you set the modulus to 23.

Symmetry of even columns: Since  whenever the exponent  is even, even columns are palindromes (i.e. ).

All subgroups of cyclic groups are cyclic

Given a generator  which generates the cyclic group  of order , there exists a single subgroup of order  for every

divisor  of . We prove this statement by showing that such a subgroup exists and that it is unique:

For example,  generates the multiplicative group modulo  of order . A subgroup of order  is generated by . Another

subgroup of order  may contain . In this case, . It follows that , which is true.

To get a better feeling for where an element with a certain order may or may not appear, you can enable the “Order” option.

Subgroup cosets
The following tool shows the cosets of the subgroup generated by the given element (see the additive groups for explanations):

Modulus: 11 Next prime Previous prime Element: 3 Unique: Delay: 0.5

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

3 9 5 4 1

4 5 9 3 1

5 3 4 9 1

6 3 7 9 10 5 8 4 2 1

7 5 2 3 10 4 6 9 8 1

8 9 6 4 10 3 2 5 7 1

9 4 3 5 1

10 1

m m − 1
m − 1 −1 (−1) =2 1 m − 1

m − 1

(−A) =e Ae e ↓ = ↑

G G = n = ∣G∣ = ∣G∣ d

d n

Existence: Let , then  is a cyclic subgroup of order .

Uniqueness: Given a subgroup  of order , we show that there is an integer  for each  so that ,

which implies that . Since  generates all elements of , there exists an integer  so that . Since a subgroup is a

group, the order of  must divide  according to Lagrange’s theorem. Therefore, . Since the order of  is , 

must be a multiple of , which means that there exists an integer  so that . It follows that  and 

.

c = n/d ⟨G ⟩ =c {G , (G ) , … , (G ) =c c 2 c d I} d

H = {A  , … ,A  }1 d d b A ∈ H A = (G )c b

H = ⟨G ⟩c G G a A = Ga

A d A =d (G ) =a d I G n a ⋅ d
n b a ⋅ d = b ⋅ n = b ⋅ (c ⋅ d) a = b ⋅ c A =

G =a (G )c b

2 13 12 6 2 =  

12/6
13 4

6 9 =  13 28 b =  =
n
a⋅d

 =12
8⋅6 4 4 =  

4
13 9

   

1 3 9 5 4

2 6 7 10 8

3 9 5 4 1

⟨G⟩

Multiplicative Additive Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Palindrome
https://crypto.stanford.edu/pbc/notes/numbertheory/cyclic.html#_subgroups_of_cyclic_groups


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2723 / 92

Non-cyclic subgroups of non-cyclic groups

Subgroups don’t have to be generated by a single element. For example,  form a multiplicative group modulo :

Since each element is its own inverse, none of the elements generates the whole subgroup. Its cosets still partition the non-cyclic

multiplicative group of coprime elements modulo 15:

1 4 11 14

2 8 7 13

The unique cosets of {1, 4, 11, 14} modulo 15.

The above tool just doesn’t support this case because we’re usually interested only in repetitions of a single element.

Group notations
The multiplicative group of integers modulo some number  is usually denoted as  or . As mentioned previously, the former

notation is derived from the quotient ring . Both notations imply that the integers below the modulus are restricted to those which have an

inverse. Cryptographers often use the latter notation with an asterisk as the multiplication sign, i.e. .

Fermat’s little theorem
Fermat’s little theorem states that for any integers  and , if  is prime and  is not a multiple of , then . This theorem is an

instantiation of the second consequence of Lagrange’s theorem, which states that if you repeat an element of a group as many times as there are

elements in the group, you get the identity element of the group. The theorem is named after Pierre de Fermat (1607 − 1665). There is no

Fermat’s big theorem, but several theorems are named after him. We will generalize Fermat’s little theorem to non-prime integers in the next

chapter.

Modular multiplicative inverse
As discussed earlier, you can compute the inverse of an element by repeating it one time less than its order. Using Fermat’s little theorem, we can

compute the multiplicative inverse modulo a prime number  for any element  as  because . As we’ll see in

the next chapter, there’s a faster way to compute the multiplicative inverse of an element. In cryptography, speed is not the only consideration,

though; you also want to avoid side-channel attacks. If you want to compute the multiplicative inverse of an element in constant time, you might

still prefer to compute  as .

Discrete-logarithm problem (DLP)

1 3 9 5 4

4 1 3 9 5

5 4 1 3 9

6 7 10 8 2

7 10 8 2 6

8 2 6 7 10

9 5 4 1 3

10 8 2 6 7

{1, 4, 11, 14} 15

  

4 ⋅ 4

4 ⋅ 11

4 ⋅ 14

11 ⋅ 11

11 ⋅ 14

14 ⋅ 14

=  115

=  1415

=  1115

=  115

=  415

=  115

m (Z/mZ)× Z  m
×

Z/mZ
Z  m

∗

a p p a p a =  

p−1
p 1

p A A =  

−1
p A

p−2 A ⋅ A =  

p−2
p A =  

p−1
p 1

A−1 Ap−2

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n#Notation
https://en.wikipedia.org/wiki/Asterisk
https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
https://en.wikipedia.org/wiki/Pierre_de_Fermat
https://en.wikipedia.org/wiki/Fermat%27s_theorem
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Timing_attack#Avoidance


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2724 / 92

A lot of modern cryptography is built on the assumption that computing the discrete logarithm in multiplicative groups is infeasible on classical

computers if you choose the modulus  carefully. In other words, while computing  given a generator  and an exponent  is easy (we

have seen that the running time is proportional to the number of bits in ), computing  as the logarithm of  to the base  is

presumably hard. If this assumption is indeed true, modular exponentiation is a linear one-way function. As mentioned earlier, it is widely believed

that this is the case, but we still lack a proof for the hardness of the discrete-logarithm problem. We’ll study the best known algorithms for solving

the discrete-logarithm problem in the second to last chapter.

Quantum computers

Quantum computers perform calculations using the physical properties of quantum mechanics, such as superposition. The discrete-

logarithm problem can be solved efficiently on a sufficiently powerful quantum computer with Shor’s algorithm, named after Peter Shor

(born in 1959). The quantum computers which have been built until now are by far not powerful enough to break modern cryptography, but

since this might change in the future, cryptography which cannot be broken by quantum computers – so-called post-quantum cryptography –

is an active area of research with increasing interest.

Prime numbers
We’ve talked quite a bit about prime numbers already. The goal of this chapter is to give you a better understanding about primality and related

concepts such as factorization. From here to the end of this article, the topics get more and more advanced. None of the remaining topics are

required to get a basic understanding of modern cryptosystems. This chapter fills some gaps from previous chapters, such as why only coprime

integers have a multiplicative inverse, generalizes some results, such as Fermat’s little theorem to Euler’s theorem, and discusses some

algorithmic aspects, such as how to compute the multiplicative inverse and how to test whether an integer is prime. The chapters afterwards build

towards elliptic curves, which are another popular way to construct a linear one-way function.

Formatting preferences

All tools in this chapter can handle arbitrarily large integers, which are easier to read when their digits are grouped with a delimiter. I prefer

the apostrophe as a thousand separator, but other people have different preferences. From time to time, you may also want to copy numbers

or expressions to other calculators or to source code, in which case it is best if the number or expression isn’t formatted at all. (Many

programming languages actually allow underscores in integer literals.) For these reasons, I decided to make the outputs of my tools fully

configurable, including the signs of various operations:

Decimal integer: 1'234'567'890'987'654'321

Hexadecimal integer: 0x112210F4 B16C1CB1

Equation: 1 + 2 − 3 · 4 / 5 % 6

Prime factorization
Every positive integer is a multiple of 1 and itself. Many positive integers are also a multiple of other positive integers, which means that they can

be divided by an integer between 1 and themselves without a remainder. Such integers can therefore be written as a product of two factors,

which are both smaller than their product. Positive integers which can be split into a product of two smaller positive integers are called

composite. All other positive integers except 1 are called prime. The process of splitting a composite number into a product of smaller integers is

called integer factorization. As long as one of the factors is still composite, you can continue the factorization until all factors are prime. Since the

factors are smaller than the integer which is factorized but cannot get smaller than 2, the factorization into primes terminates after a finite

number of steps for every integer. To find the factors of an integer, you can simply try all possible factors until the square root of the given integer.

This algorithm is called trial division and proves constructively that every positive integer can be written as a product of primes. We’ll prove later

that the factorization into primes is unique (up to the order of the primes). Unfortunately, the number of integers between 2 and the square root

of the given integer scales exponentially in the number of bits, and hence trial division isn’t very useful in practice. There are faster factoring

algorithms (we’ll study one of them in the second to last chapter), but similar to the discrete-logarithm problem, no algorithm is known for

factoring (large) integers efficiently on classical computers. The following tool factorizes integers into primes using trial division with the

configured delay between attempts.

m K =  m Gk G k

k k = log  (K)G K G

Decimal separator: ' (apostrophe, U+0027)

Hexadecimal separator: ␣ (space, U+0020)

Minus sign: − (minus sign, U+2212)

Multiplication sign: · (middle dot, U+00B7)

Division sign: / (slash, U+002F)

Modulo sign: % (percent sign, U+0025)

Exponentiation sign: (none, raise exponent)

   

7

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Base_(exponentiation)
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_superposition
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Peter_Shor
https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Decimal_separator#Digit_grouping
https://en.wikipedia.org/wiki/Apostrophe
https://github.com/KasparEtter/ef1p/issues/3
https://en.wikipedia.org/wiki/Expression_(mathematics)
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Underscore
https://en.wikipedia.org/wiki/Integer_literal
https://en.wikipedia.org/wiki/Multiple_(mathematics)
https://en.wikipedia.org/wiki/Product_(mathematics)
https://en.wikipedia.org/wiki/Divisor
https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Trial_division
https://en.wikipedia.org/wiki/Constructive_proof
https://en.wikipedia.org/wiki/Integer_factorization#Factoring_algorithms


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2725 / 92

Integer: 231 Totients: Delay: 0.20 Factorize

6 steps in 4.95 s

231 = 3 · 7 · 11

Clear

The integer 1

By convention, 1 is not included in the set of prime numbers in order to make statements involving prime numbers simpler.

Euclid’s theorem

Euclid’s theorem states that there are infinitely many prime numbers. It is named after Euclid, who proved it around 300 BCE. If there were

only a finite number of primes, then the product of all primes plus 1 cannot be divided without remainder by any of the prime numbers. The

new number is therefore either prime or has prime factors which were not accounted for. Since this is a contradiction, there has to be an

infinite number of primes.

Smooth numbers

An integer is called -smooth if none of its prime factors are greater than . As you can see when playing with the above tool, factoring large

numbers is easy if most of their factors are sufficiently small. Since this is often undesirable in cryptographic applications, you have to choose

the delicate parameters carefully.

Multiset of prime factors
Since each number can be written as a product of prime factors, we can represent each number by the multiset of its prime factors. Unlike a set, a

multiset can contain an element multiple times. The number of times that an element is included in a multiset is called the multiplicity of the

element in the multiset. We can extend the following operations and relations from set theory to multisets:

Union: The union  of the multisets  and  contains each element contained in  or  with the higher of the two multiplicities. Using the

notation from sets, we write this as . For example, .

Intersection: The intersection  of the multisets  and  contains each element contained in both  and  with the lower of the two

multiplicities. Using the notation from sets, we write this as . For example, .

Inclusion: The multiset  includes the multiset  if every element contained in  is also contained in  with the same or a higher multiplicity.

We write this as  or, if at least one element has a higher multiplicity in  than in , as . For example, .

Unlike tuples and lists, the order of the elements in multisets matters neither for comparison nor the above operations. We say that an integer  is

coprime with an integer  (or, equivalently, that  is relatively prime to ) if  and  have no prime factor in common. Using the name of an integer

in blackboard bold to denote the multiset of its prime factors, we can write this as , where  denotes the empty multiset. Coprimality

can be visualized with a Venn diagram, named after John Venn (1834 − 1923), like this:

𝔸 𝔹

The prime factors of two coprime integers are disjoint.

Greatest common divisor (GCD)
The greatest common divisor of two integers is the largest positive integer which divides both integers without a remainder. Since the

factorization into primes is unique, as we will prove soon, the prime factors of any divisor of an integer  are included in the prime factors of . (If

this wasn’t the case, the factorization of  wouldn’t be unique.) The greatest common divisor of any two integers thus corresponds to the

intersection of their prime factors because any larger integer no longer divides both integers:

   

n n

C A B A B
C = A ∪ B {2, 2, 3} ∪ {2, 5} = {2, 2, 3, 5}

C A B A B
C = A ∩ B {2, 2, 3} ∩ {2, 5} = {2}

B A A B
A ⊆ B B A A ⊂ B {2, 2} ⊂ {2, 2, 3}

a

b a b a b

A ∩ B = ∅ ∅

a a

a

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Prime_number#Primality_of_one
https://en.wikipedia.org/wiki/Euclid%27s_theorem
https://en.wikipedia.org/wiki/Euclid
https://en.wikipedia.org/wiki/Common_Era
https://en.wikipedia.org/wiki/Proof_by_contradiction
https://en.wikipedia.org/wiki/Smooth_number
https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Binary_relation
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Multiset#Basic_properties_and_operations
https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Inclusion_(set_theory)
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/List_(abstract_data_type)
https://en.wikipedia.org/wiki/Coprime_integers
https://en.wikipedia.org/wiki/Blackboard_bold
https://en.wikipedia.org/wiki/Empty_set
https://en.wikipedia.org/wiki/Venn_diagram
https://en.wikipedia.org/wiki/John_Venn
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Greatest_common_divisor


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2726 / 92

𝔸 GCD 𝔹

GCD = intersection of prime factors

We write the greatest common divisor of the integers  and  as . Any integer which divides both  and  also divides . The only

and thus the greatest common divisor of two coprime integers is 1. As we will see in a moment, the greatest common divisor of two integers can

be computed efficiently without having to determine the prime factors of both integers first.

Least common multiple (LCM)
The least common multiple of two positive integers is the smallest positive integer which is a multiple of both integers. The product of all the

numbers in the union of the prime factors of both integers is the smallest number which is a multiple of both integers:

𝔸 LCM 𝔹

LCM = union of prime factors

We write the least common multiple of the integers  and  as . Since the product of  and  contains the prime factors in the

intersection twice, you get the least common multiple when you divide the product by the greatest common divisor of  and :

If  and  are coprime, then  and . (Unlike Wikipedia, we don’t care about negative inputs here.)

Euclidean algorithm
The greatest common divisor can also be interpreted geometrically: Given a rectangle, what is the largest square which tiles the rectangle in both

dimensions without remainders? If you want to tile a rectangular bathroom which is 51 units wide and 21 units deep, for example, which square

tiles should you order so that you don’t have to break any tiles and have as little work as possible? In order to find the answer, we can make the

problem smaller and smaller. Any square which divides some length in one dimension also divides the same length in the other dimension. This

means that we can subtract the smaller side from the larger side without affecting the solution. Given that our room is 21 units deep, we know

that there has to be a boundary between tiles 21 units in from the left. This reduces the problem to a rectangle which is 30 units wide and 21 units

deep. We can repeat this procedure of splitting off squares from our rectangle until we’re left with a square. The side of this square corresponds

to the greatest common divisor of the two numbers that we started with. In our example, a square whose sides are 3 units is the largest square

which tiles the room:

51

21 21 21

9

9

3 3 3

From the pink room, we split off the red squares and the orange squares to get the yellow squares.

This procedure for determining the greatest common divisor of two numbers is called the Euclidean algorithm. It is named after the Greek

mathematician Euclid, who described it around 300 BCE. A recursive implementation of the algorithm looks as follows:

a b gcd(a, b) a b gcd(a, b)

a b lcm(a, b) a b

a b

lcm(a, b) =  

gcd(a, b)
a ⋅ b

a b gcd(a, b) = 1 lcm(a, b) = a ⋅ b

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Least_common_multiple
https://en.wikipedia.org/wiki/Least_common_multiple#Using_the_greatest_common_divisor
https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Euclid
https://en.wikipedia.org/wiki/Common_Era
https://en.wikipedia.org/wiki/Recursion_(computer_science)


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2727 / 92

The algorithm is guaranteed to terminate because one of the two parameters gets smaller in every iteration and the parameters never get smaller

than 1 since 1 divides all integers. Instead of subtracting the smaller number from the larger number one by one, we can use the modulo operation

to subtract the smaller number from the larger number as many times as it takes to make the larger number smaller than the smaller number in

one go. The Euclidean algorithm is typically implemented as follows:

function gcd(a, b) { 
    while (b != 0) { 
        let t = b; 
        b = a % b; 
        a = t; 
    } 
    return a; 
} 

Since this is valid JavaScript, you can copy the code to the developer tools of your browser and verify that gcd(51, 21) is indeed 3. t is just a

temporary variable to swap the values of a and b. If b is greater than a initially, the first round results only in the swapping of a and b. Unlike

integer factorization, the Euclidean algorithm is efficient and can thus be computed even for very large integers.

Extended Euclidean algorithm
When calculating the greatest common divisor of any positive integers  and  with the Euclidean algorithm, we can keep track of how we

combined these two numbers to get the current intermediate value. Instead of subtracting numbers from one another, we subtract equations

from one another so that we end up with coefficients for  and  which result in the greatest common divisor:

This procedure is known as the extended Euclidean algorithm, and the equation we end up with is known as Bézout’s identity. The following tool

visualizes the extended Euclidean algorithm with a table. The first two rows after the column titles contain the initialization of the algorithm as in

the equations above this paragraph, where the larger number is taken first. The “remainder” column contains the values of the Euclidean

algorithm; the two columns after that contain the coefficients of the larger and the smaller input. The “quotient” column indicates how many times

the current row is subtracted from the row above. The cell with the green background contains the last value before we reach 0, which is the

greatest common divisor of the two inputs to the tool.

Integer a: 51 Integer b: 21

Step Quotient Remainder = … · 51 + … · 21

51 1 0

− 2 · 21 0 1

1 − 2 · 9 1 −2

2 − 3 · 3 −2 5

3 0 7 −17

Greatest common divisor: gcd(51, 21) = 3

Least common multiple: lcm(51, 21) = 357

Multiplicative inverse: [does not exist]

Bézout's identity: 3 = (−2) · 51 + 5 · 21

Bézout’s identity
Bézout’s identity, named after Étienne Bézout (1730 − 1783), makes the following two statements:

Existence: For any two positive integers  and , there exist some integers  and  so that . The extended Euclidean

algorithm proves constructively that such coefficients  and  exist. These coefficients are not unique, though. Since the coefficients in the last

gcd(a, b) =    ⎩⎨
⎧a

gcd(a − b, b)
gcd(a, b − a)

if a = b,
if a > b,
if a < b.

a b

a b

a

b

gcd(a, b)

= 1 ⋅ a + 0 ⋅ b

= 0 ⋅ a + 1 ⋅ b

⋮

= c ⋅ a + d ⋅ b

   

a b c d (a, b) = c ⋅ a + d ⋅ b
c d

gcd

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_development_tools
https://en.wikipedia.org/wiki/Temporary_variable
https://en.wikipedia.org/wiki/Swap_(computer_programming)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Algorithmic_efficiency
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://en.wikipedia.org/wiki/%C3%89tienne_B%C3%A9zout
https://en.wikipedia.org/wiki/Constructive_proof
https://en.wikipedia.org/wiki/Coefficient


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2728 / 92

row of the tool above add up to  when multiplied by the corresponding input, you can add multiples of the last row to the second to last row

without affecting the left side of the equation. For example, as  and , we also have that 

.

Multiples: Every linear combination of  and  is a multiple of , and every multiple of  can be expressed as a linear

combination of  and . Denoting  as , we can write this as . The second half of this

statement is an immediate consequence of the previous point: Since  for some integers  and , any multiple 

 due to distributivity, which is a linear combination of  and . We prove the first half of the statement with the following two

lemmas:

Let  and  be the smallest positive element in . Claim: All elements in  are a multiple of . Proof: Using

Euclidean division, every element  in  can be written as  for some integers  and  with . Since  and  are in , which

means that  and  for some , so is 

. Since  and  is by assumption the smallest positive element in ,  must be .

Therefore, every  is indeed a multiple of . (As we will see later,  is a so-called ideal.)

Claim: The smallest positive element  is the greatest common divisor of  and . Proof: Since all linear combinations of  and  are

multiples of  according to the first lemma, both  and  are multiples of , which means that  is a common divisor of both  and . Any

integer which divides both  and  also divides every integer of the form  due to distributivity. Since  is of this form, all common

divisors divide . Therefore,  is the greatest common divisor of  and .

The second part of Bézout’s identity matches our earlier observation that all modular multiples of a number are spaced equally. You can also think

of the greatest common divisor of  and  as the biggest unit in which  and  can be expressed without fractions. Just as you can’t get fractions

when adding and subtracting integers, you can’t get fractions of this unit when you add and subtract only multiples of it. I use distance to visualize 

 and , but you can apply this idea to any quantity, including mass, volume, and time.

gcd

0 1 2 3 4 5 6 7 8 9 10 11 12 130 2 4 6 8 10 12

a b

You cannot get an odd number when adding and subtracting two even numbers.

The first part of Bézout’s identity means that we can measure this unit when given only prototypes for the quantities  and :

gcd

+ a + a

− b

The extended Euclidean algorithm tells us that gcd(10, 6) = 2 = 2 · 6 − 1 · 10.

Euclid’s lemma
Euclid’s lemma states that if a prime  divides the product  of some integers  and , then  divides  or  (or both). Clearly, if  divides , the

statement is true. So all we need to show is that if  does not divide , then  divides . Since  is prime and  is not a multiple of ,  and  are

coprime. Using Bézout’s identity, we know that there are some integers  and  so that . When we multiply this equation by , we

get . Since the previous statement is an implication, we can assume the so-called antecedent (that  divides ) when

proving the so-called consequent (that  divides ). Therefore,  is a multiple of  because both  and  are multiples of . (If you add

multiples of a number, you get another multiple due to distributivity:  for any  and .)

Unique factorization theorem

The unique factorization theorem, which is also known as the fundamental theorem of arithmetic, states that every integer greater than 1

can be written uniquely – up to the order of the factors – as a product of prime numbers. It makes two claims:

Existence: All integers greater than 1 can be factorized into primes because each of them is either composite or prime.

Uniqueness: Suppose that there are integers greater than 1 which have distinct prime factorizations. Let  be the smallest such integer so

that , where each  and each  is prime. Since  divides , it has to divide one

of the s according to (a recursive application of) Euclid’s lemma. Since we don’t care about the order of the s, let’s assume that 

divides . Since both  and  are prime and greater than 1, it follows that . When we cancel these factors on both sides of the

equation, we get . Given that the two factorizations of  were distinct, these two factorizations of  have

to be distinct as well. Since ,  cannot be the smallest integer with distinct prime factorizations, which is a contradiction. Thus, each

positive integer can be represented by a unique multiset of prime factors.

Multiplicative inverse revisited

0
3 = (−2) ⋅ 51 + 5 ⋅ 21 0 = 7 ⋅ 51 + (−17) ⋅ 21 3 =

(−2 + 7) ⋅ 51 + (5 − 17) ⋅ 21 = 5 ⋅ 51 + (−12) ⋅ 21

a b gcd(a, b) gcd(a, b)
a b gcd(a, b) g {e ⋅ a + f ⋅ b ∣ e, f ∈ Z} = {h ⋅ g ∣ h ∈ Z}

g = c ⋅ a + d ⋅ b c d h ⋅ g = (h ⋅ c) ⋅
a + (h ⋅ d) ⋅ b a b

I = {e ⋅ a + f ⋅ b ∣ e, f ∈ Z} i I I i

j I j = q ⋅ i + r q r 0 ≤ r < i i j I
i = i  ⋅a a + i  ⋅b b j = j  ⋅a a + j  ⋅b b i  , i  , j  , j  ∈a b a b Z r = j − q ⋅ i = (j  ⋅a a + j  ⋅b b) − q ⋅ (i  ⋅a a + i  ⋅b

b) = (j −a q ⋅ i  ) ⋅a a + (j  −b q ⋅ i  ) ⋅b b ∈ I 0 ≤ r < i i I r 0
j ∈ I i I

i ∈ I a b a b

i a b i i a b

a b e ⋅ a + f ⋅ b i

i i a b

a b a b

a b

a b

p a ⋅ b a b p a b p a

p a p b p a p p a

c d c ⋅ p + d ⋅ a = 1 b

c ⋅ p ⋅ b + d ⋅ a ⋅ b = b p a ⋅ b
p b b p c ⋅ p ⋅ b d ⋅ a ⋅ b p

e ⋅ p + f ⋅ p = (e + f) ⋅ p e f

n

n = p  ⋅1 p  ⋅2 … ⋅ p  =k q  ⋅1 q  ⋅2 … ⋅ q  l p  i q  j p  1 n = q  ⋅1 q  ⋅2 … ⋅ q  l

q  j q  j p  1

q  1 p  1 q  1 p  =1 q  1

m = p  ⋅2 … ⋅ p  =k q  ⋅2 … ⋅ q  l n m

m < n n

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Distributive_property
https://en.wikipedia.org/wiki/Lemma_(mathematics)
https://en.wikipedia.org/wiki/Ideal_(ring_theory)
https://en.wikipedia.org/wiki/Unit_of_measurement
https://en.wikipedia.org/wiki/Fraction
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Quantity
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Euclid%27s_lemma
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Material_conditional
https://en.wikipedia.org/wiki/Antecedent_(logic)
https://en.wikipedia.org/wiki/Consequent
https://en.wikipedia.org/wiki/Distributive_property
https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
https://en.wikipedia.org/wiki/Proof_by_contradiction


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2729 / 92

Coming back to multiplicative groups modulo some integer  for a moment: Why is it that only those integers have a multiplicative inverse which

are coprime with the group’s modulus? Coprimality is necessary and sufficient for an integer to have an inverse since:

Sufficient: If an integer  is coprime with the modulus , Bézout’s identity tells us that there are two integers  and  so that 

. This equation means that  equals  up to a multiple of , that is .  is therefore the multiplicative inverse of  modulo . The

extended Euclidean algorithm can be used to determine . This approach is usually much faster than using exponentiation. The above tool

marks the coefficient of the smaller number with a blue background whenever the greatest common divisor is . If you use the extended

Euclidean algorithm only to determine the multiplicative inverse of , you don’t need to keep track of the coefficient of  (i.e. you don’t have to

implement the second to last column).

Necessary: The second part of Bézout’s identity tells us that the closest you can get to a multiple of  without reaching it is . If an

integer  is not coprime with the modulus , . Consequently, there is no integer  so that . For example, if both  and 

 are even, which means that their greatest common divisor is a multiple of , you cannot reach an odd number, including , by adding 

repeatedly to itself.

There is another important question to be answered: Why are multiplicative groups closed if you limit the elements to the integers which are

coprime with the modulus? The best way to think about this is with multisets of the prime factors. When you multiply two integers, you combine

the multisets of their prime factors by adding the multiplicities of each element. For example, . If

neither  nor  has prime factors in common with some integer , then neither has . Calculating the product modulo  doesn’t change this

fact because the congruence property of modular multiplication means that you can reduce integers to their remainder, not that you have to.

After all, the Euclidean algorithm showed us that subtracting the smaller number  repeatedly from the larger number  does not change the

greatest common divisor of the two numbers.

Since the order of a group plays a crucial role in cryptography, our next goal is to find a formula which counts the number of coprime integers

smaller than . On our way there, we’ll study another famous result from number theory: the Chinese remainder theorem.

Least common multiple and 0

There is another way to see why elements which share a prime factor with the modulus are undesirable. If the integer  is not coprime with

the modulus , then  and . This means that there is some integer  for which .

Since  is also a multiple of , . As I explained when I introduced multiplicative groups,  has to be excluded from the set

of elements. Since a group has to be closed, we have to exclude  or . This problem can be observed in the operation table of multiplicative

groups. If we set the modulus to 12, for example, we see that all the elements which are not coprime with the modulus (the tool marks them

with a blue background) reach  at some point. After that, the elements repeat because . The

first factor for which we reach  is . This means that there are  repetitions in the rows and columns of non-

coprime elements. It also implies that the equation  has  solutions in  if  is a multiple of  and no solution

otherwise.

Uniqueness of the multiplicative inverse

As required by the group axioms, the multiplicative inverse of a coprime element is unique. Suppose that the coprime element  has two

multiplicative inverses:  and . It follows that  and hence that . This means that 

 is a multiple of . Since ,  has to divide  according to a generalized version of Euclid’s

lemma. (Its proof required only that  and  are coprime, which means that  has to be only relatively prime to one of the factors, not

“absolutely” prime.) Therefore,  has to equal  up to a multiple of .

Chinese remainder theorem (CRT)
The Chinese remainder theorem states that if the remainders of an integer are known relative to several moduli which are coprime with one

another, the integer is unique up to multiples of the product of the moduli. More formally, the system of congruences

has a unique solution  with  if  for all , where . The problem was first stated in a Chinese text

around the 4th century CE. The solution can be determined as follows: Let , which is the product of all moduli except . Given that 

 has no prime factor in common with any of the other moduli,  and  are coprime. Using the extended Euclidean algorithm, we find an 

m

a m b n b ⋅ a + n ⋅ m = 1
b ⋅ a 1 m b ⋅ a =  m 1 b a m

b

1
a m

m gcd(a,m)
a m gcd(a,m) > 1 b b ⋅ a =  m 1 a

m 2 1 a

6 ⋅ 15 = {2, 3} + {3, 5} = {2, 3, 3, 5} = 90
a b m a ⋅ b m

m a ⋅ b

m

a

m gcd(a,m) > 1 lcm(a,m) < a ⋅ m b < m b ⋅ a = lcm(a,m)
lcm(a,m) m b ⋅ a =  m 0 0

a b

0 (b + 1) ⋅ a =  m b ⋅ a + 1 ⋅ a =  m 0 + a =  m a

0 b =  =
a

lcm(a,m)
 gcd(a,m)

m gcd(a,m)

a ⋅ x =  m c d = gcd(a,m) Z  m c d

a

b  ⋅1 a =  m 1 b  ⋅2 a =  m 1 b  ⋅1 a =  m b  ⋅2 a b  ⋅1 a − b  ⋅2 a =  m 0
b  ⋅1 a − b  ⋅2 a = (b  −1 b  ) ⋅2 a m (a,m) = 1 m b  −1 b  2

p a p

b  1 b  2 m

  

x

x

x

=  r  m  1 1

=  r  m  2 2

⋮

=  r  m  l l

x 0 ≤ x < M (m  ,m  ) =i j 1 i = j M = m  i

M  =i M/m  i m  i

m  i M  i m  i N  i

gcd

gcd  ∏i=1
l

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Necessity_and_sufficiency
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Sunzi_Suanjing
https://en.wikipedia.org/wiki/Common_Era


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2730 / 92

so that . As  is a multiple of all other moduli,  for all . Therefore,  satisfies all

congruences. The solution is unique because for any two solutions,  for all  and thus also  because any multiple of

coprime factors is also a multiple of their product.

The following tool implements this procedure for . If you want to solve a larger system of congruences, you can repeatedly replace any two

equations with their solution until only a single congruence is left, which is the solution to the whole system. The case of  is special because 

 and , which means that a single Bézout’s identity is enough to find the solution:

Problem: x =  r  =  3

x =  r  =  4

Bézout's identity: 1 = N  · m  + N  · m  

= (−2) · 7 + 3 · 5

Solution: x =  r  · N  · m  + r  · N  · m  

=  3 · (−2) · 7 + 4 · 3 · 5 

=  18

Sum and product of similar terms

I used the following two shortcuts in the description of the Chinese remainder theorem, which you might not be familiar with:

Capital-sigma notation: , and

Capital-pi notation: , where  is the index which is incremented.

Signals of different frequencies

The Chinese remainder theorem is more intuitive than it may seem. Given two pulses with coprime repetition frequencies, it’s clear that the

phase of one pulse shifts relative to the phase of the other pulse until they re-align at the least common multiple:

0 5 10 15 20 25 30 35

0 7 14 21 28 35

Visualizing shifting repetitions on a number line with m  = 5 and m  = 7.

The offset between the two pulses has to be different throughout this cycle. If the same offset occurred twice, the difference between the

two occurrences would be a multiple of both frequencies smaller than the least common multiple, which is a contradiction. (This argument is

similar to the one we used to establish that you reach the identity element before any of the group’s elements can appear again when

repeating an element.) This is also why all (and only) the coprime elements generate the additive group. In the above example, there are 5

offsets to cover and 5 green ticks before the cycle repeats. Since no two offsets may be the same, all 5 offsets are covered due to the

pigeonhole principle. (On the other side of the number line, there are 7 offsets to cover with 7 blue ticks.) The difference between the two

remainders in the tool above determines into which repetition the solution falls. For example, if the first remainder is one smaller than the

second remainder, the solution is 15 + r .

Group isomorphisms
A group isomorphism is an invertible function which maps the elements of one group to distinct elements of another group so that the result of

combining any two elements in one group matches the result when combining the paired elements in the other group. More formally, given two

groups  and  with corresponding operations  and , an invertible function  defines a group isomorphism if and only if 

 for all . A group isomorphism can be visualized as follows:

N  ⋅i M  =  i m  i 1 M  i N  ⋅i M  =  i m  j 0 j = i x =  M r  ⋅i N  ⋅i M  i

x  −1 x  =  2 m  i 0 i x  −1 x  =  2 M 0

l = 2
l = 2

M  =1 m  2 M  =2 m  1

Modulus m1: 5

Modulus m2: 7

Remainder r1: 3

Remainder r2: 4

   

m1 1 5

m2 2 7

1 2 2 1

m  · m1 2 1 1 2 2 2 1

35

35

 r  ⋅∑i=1
l

i N  ⋅i M  =i r  ⋅1 N  ⋅1 M  +1 … + r  ⋅l N  ⋅l M  l

 m  =∏i=1
l

i m  ⋅1 … ⋅ m  l i

1 2

1

G  1 G  2 ∘  1 ∘  2 f : G  →1 G  2

f(A ∘  1 B) = f(A) ∘  2 f(B) A,B ∈ G  1

 ∑i=1
l

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
https://en.wikipedia.org/wiki/Multiplication#Capital_pi_notation
https://en.wikipedia.org/wiki/Index_notation
https://en.wikipedia.org/wiki/Pulse_repetition_frequency
https://en.wikipedia.org/wiki/Phase_(waves)#Phase_shift
https://en.wikipedia.org/wiki/Number_line
https://en.wikipedia.org/wiki/Proof_by_contradiction
https://en.wikipedia.org/wiki/Pigeonhole_principle#Alternative_formulations
https://en.wikipedia.org/wiki/Group_isomorphism
https://en.wikipedia.org/wiki/Bijection


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2731 / 92

A1 B1 C1 

A2 B2 C2 

∘1 =

∘2 =

𝔾1 :

𝔾2 :

An isomorphism between two groups.

You may have realized that this looks similar to our definition of a linear one-way function. The main differences are that the inputs to an

isomorphism are the elements of a group, which don’t have to be integers, and that the operation doesn’t have to resemble addition. Moreover, an

isomorphism may be easy to invert, thus neither “linear” nor “one-way” are appropriate adjectives.

If an isomorphism exists between the groups  and , the groups are said to be isomorphic, which is usually written as . For a function

to be invertible, it has to map a single element of  to every element of . As a consequence, isomorphic groups have the same order (

), and the inverse of an isomorphism is also an isomorphism. Furthermore, an isomorphism maps the identity element of  to the identity

element of  because  for all . It also maps the inverse  of each element  to the inverse of 

 because . Since you reach the identity element in one group only when you reach it in the other group,

the order of mapped elements is the same: . Last but not least, either both groups are commutative or neither of them is. In

conclusion, isomorphic groups represent the same structure, they just use different labels for the elements.

Isomorphism of cyclic groups

All cyclic groups of the same order are isomorphic. As we saw earlier, additive groups are always cyclic. This means that all cyclic groups of

order  are isomorphic to  and thus commutative. Given a generator ,  if and only if .

In some groups, the inverse isomorphism is difficult to compute, giving us the linear one-way functions we were looking for.

Direct product
The Cartesian product of the  sets  to  is the set of -tuples where the -th component is an element of . More formally:

The product is named after René Descartes (1596 − 1650). The product of  groups forms a group with the following operation:

This so-called direct product of groups with such a component-wise operation fulfills all group axioms: It is closed and associative because the

operation in each of the groups is closed and associative, the tuple consisting of each group’s identity element is the identity element of the direct

product, and each element of the direct product has a unique inverse consisting of the component-wise inverses. Being a Cartesian product, the

order of the direct product equals the product of each group’s order:

The order of each element in the direct product is the least common multiple of the order of each component in its group:

Hence, the direct product is cyclic if and only if the individual groups are all cyclic and their orders are coprime with one another.

Internal direct product of commutative subgroups

G  1 G  2 G  ≅1 G  2

G  1 G  2 ∣G  ∣ =1

∣G  ∣2 G  1

G  2 f(A) = f(A ∘  1 E) = f(A) ∘  2 f(E) A ∈ G  1 A A ∈ G  1

f(A) f(A) ∘  2 f( ) =A f(A ∘  1 ) =A f(E)
∣A∣ = ∣f(A)∣

m Z  m
+ G ≅ Z  m

+ ∣G∣ = m

The function  is a group isomorphism because:

a b a + b

Ga Gb Ga + b 

+ =

· =

ℤ
+  m :

⟨G⟩:

An isomorphism with  using multiplicative notation.

f(x) = Gx

Z  m
+

l G  1 G  l l i G  i

G  ×1 … ×G  =l {(A  , … ,A  ) ∣1 l A  ∈1 G  , … ,A  ∈1 l G  }l

l

(A  , … ,A  ) ∘1 l (B  , … ,B  ) =1 l (A  ∘  1 1 B  , … ,A  ∘  1 l l B  )l

∣G  ×1 … ×G  ∣ =l ∣G  ∣ ⋅1 … ⋅ ∣G  ∣l

∣(A  , … ,A  )∣ =1 l (∣A  ∣, … , ∣A  ∣)1 l

⟨G⟩

Multiplicative Additive Both

lcm

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Inverse_function
https://en.wikipedia.org/wiki/Cartesian_product
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
https://en.wikipedia.org/wiki/Direct_product_of_groups


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2732 / 92

Given two subgroups  and  of a commutative group  which have no element in common other than the identity element  (i.e. 

), the so-called internal direct product  is isomorphic to the direct product 

(i.e. ). The isomorphism is given by the function , which maps elements of  to elements

of . In order to show that this is indeed an isomorphism, we need to show that  is compatible with the group operations (i.e. 

) and invertible:

Compatibility: 

 due to associativity and commutativity.

Invertibility (a so-called bijection): The function  is invertible if the following two criteria are fulfilled:

Distinct elements are mapped to distinct elements (injectivity): This is the case if we obtain equal outputs only for equal inputs. In

other words, we need to show that  implies . As , we have that 

. Clearly,  and  due to closure. Since the identity element is the only element which is

in both  and ,  and . Thus,  and .

Every element of the target group is reached (surjectivity): Since every element in  is of the form  by definition,

there’s an input for every element in , namely  because .

Order when combining two elements of coprime orders

Given a finite commutative group  with two elements  and  so that , the order of  is . Since 

generates the subgroup  and  generates the subgroup , their intersection is a subgroup of both  and . By Lagrange’s

theorem,  divides both  and . Since ,  has to equal . Since the identity

element  is part of every subgroup, . According to the previous box,  is thus isomorphic to .

Therefore, .

Composite groups
Given the  coprime moduli  and their product , the additive group  is isomorphic to the direct product of 

, written as follows:

Let us verify this step by step. Since the order of additive groups is given by the modulus, both groups contain the same number of elements: 

. According to the Chinese remainder theorem, there’s a unique element in  for every element of 

. As a consequence, the function  is invertible.  is an isomorphism because modular equivalence is a

congruence relation for any modulus: 

 for any .

The same function is also an isomorphism for multiplicative groups because :

Both groups contain the same number of elements because an integer is coprime with  if and only if it is coprime with all moduli .

This gives us an easy way to determine the number of elements in multiplicative groups modulo a composite integer, as we shall see in the next

section.

You can display the decomposition of each element modulo the prime factors of the modulus in the operation tables of additive groups and

multiplicative groups by enabling the “Product” option. For example, . Instead of multiplying two elements in , you can

multiply their components in  and . For example, . Decomposing a composite group into a

direct product of its factors is another way to see why only coprime elements have an inverse because multiples of the prime factors are mapped

to  in the corresponding group and  has no multiplicative inverse.

Euler’s totient function φ
As explained earlier, multiplicative groups contain all the integers between  and  which are coprime with the modulus . So how many

coprime integers below  are there? We answer this question by starting with the simplest case and generalizing from there:

 for some prime : All integers strictly between  and  (i.e. ) are coprime with . Using the Greek letter phi to denote the

function which returns the number of coprime integers smaller than its input, .

 for some prime  and a positive integer : All integers between  and  except the multiples of  are coprime with . Since 

 for , there are  multiples of  which have to be excluded. Therefore, 

.

H  1 H  2 G E H  ∩1

H  =2 {E} H  ∘1 H  =2 {A  ∘1 A  ∣2 A  ∈1 H  ,A  ∈1 2 H  }2 H  ×1 H  2

H  ×1 H  ≅2 H  ∘1 H  2 f((A  ,A  )) =1 2 A  ∘1 A  2 H  ×1 H  2

H  ∘1 H  2 f f(A ∘  1

B) = f(A) ∘  2 f(B)

f((A  ,A  ) ∘1 2 (B  ,B  )) =1 2 f((A  ∘1 B  ,A  ∘1 2 B  )) =2 (A  ∘1 B  ) ∘1 (A  ∘2 B  ) =2 (A  ∘1 A  ) ∘2 (B  ∘1 B  ) =2

f((A  ,A  )) ∘1 2 f((B  ,B  ))1 2

f

f((A  ,A  )) =1 2 f((B  ,B  ))1 2 (A  ,A  ) =1 2 (B  ,B  )1 2 A  ∘1 A  =2 B  ∘1 B  2

∘B  1 A  =1 B  ∘2  A  2  ∘B  1 A  ∈1 H  1 B  ∘2  ∈A  2 H  2

H  1 H  2  ∘B  1 A  =1 E B  ∘2  =A  2 E A  =1 B  1 A  =2 B  2

H  ∘1 H  2 A  ∘1 A  2

H  ∘1 H  2 (A  ,A  )1 2 f((A  ,A  )) =1 2 A  ∘1 A  2

G A  1 A  2 (∣A  ∣, ∣A  ∣) =1 2 1 A  ∘1 A  2 ∣A  ∣ ⋅1 ∣A  ∣2 A  1

A  2 ⟨A  ⟩2 ⟨A  ⟩1 ⟨A  ⟩2

∣⟨A  ⟩ ∩1 ⟨A  ⟩∣2 ∣⟨A  ⟩∣1 ∣⟨A  ⟩∣2 gcd(∣⟨A  ⟩∣, ∣⟨A  ⟩∣) =1 2 1 ∣⟨A ⟩ ∩1 ⟨A  ⟩∣2 1
E ⟨A  ⟩ ∩1 ⟨A  ⟩ =2 {E} ⟨A  ⟩ ∘1 ⟨A  ⟩2 ⟨A  ⟩ ×1 ⟨A  ⟩2

∣A  ∘1 A  ∣ =2 ∣(A  ,A  )∣ =1 2 (∣A  ∣, ∣A  ∣) =1 2 ∣A  ∣ ⋅1 ∣A  ∣2

l m  , … ,m  1 l M =  m  ∏i=1
l

i Z  

M
+

Z  , … ,Z  m  1
+

m  l

+

Z  ≅M
+ Z  ×m  1

+ … × Z  m  l

+

∣Z  ∣ =M
+ ∣Z  ∣ ⋅m  1

+ … ⋅ ∣Z  ∣ =m  l

+ M Z  M
+ Z  ×m  1

+

… × Z  m  l

+ f(x) = (x   m  , … ,x % m  )1 l f(x)
f(A + B) = ((A + B) % m  , … , (A +1 B) % m  ) =l (A % m  , … ,A % m  ) +1 l

(B % m  , … ,B % m  ) =1 l f(A) + f(B) A,B ∈ Z  

M
+

(A ⋅ B) % m  =  i m  i (A % m  ) ⋅i (B % m  )i

Z  ≅M
× Z  ×m  1

× … × Z  m  l

×

M m  , … ,m  1 l

Z  ≅35
× Z  ×5

× Z7
× Z  35

×

Z  5
× Z  7

× [11 ↔ (1, 4)] ⋅ [8 ↔ (3, 1)] = [18 ↔ (3, 4)]

0 0

0 m m

m

m = p p 0 p 0 < x < p p

φ(p) = p − 1

m = pe p e 0 pe p pe 0 < c ⋅
p < pe 0 < c < pe−1 p −e−1 1 p φ(p ) =e (p −e 1) − (p −e−1 1) = p −e

p =e−1 p ⋅e−1 (p − 1)

gcd
⟨A  ⟩1

lcm

%

https://ef1p.com/number-theory/
https://proofwiki.org/wiki/Definition:Internal_Group_Direct_Product
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Injective_function
https://en.wikipedia.org/wiki/Contraposition
https://en.wikipedia.org/wiki/Surjective_function
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Phi


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2733 / 92

 for  distinct primes with positive exponents: Since powers of different primes are coprime with one another, 

 according to the previous section. Therefore, .

Given the prime factorization of , the number of coprime integers below  is given by the following formula:

This is known as Euler’s totient function, named after Leonhard Euler (1707 − 1783). (Totient comes from the Latin “tot”, which means “that

many”.) Since the computation of Euler’s totient function requires the prime factorization of the given input, I’ve included it in the prime

factorization tool above; you just have to activate the “Totients” toggle.

Euler’s theorem

Euler’s theorem is a generalization of Fermat’s little theorem: For any coprime integers  and , we have that .

Number of generators in cyclic groups

We saw that all cyclic groups are isomorphic to the additive group of the same order. Any element  that is coprime with the modulus 

generates the additive group because  is the first time you get a multiple of . (If there was a smaller number  such that , then

the least common multiple of  and  would be smaller than , which means that their greatest common divisor would be larger than .)

As a consequence, the number of generators of any cyclic group  is given by .

Sum of Euler’s totient function over divisors

As shown earlier, all subgroups of cyclic groups are cyclic, and a unique subgroup exists for every divisor  of the group’s order . Since

subgroups are groups, the cyclic subgroup of order  has  generators. This means that in a cyclic group of order , there are exactly 

elements of order  for every divisor  of . According to Lagrange’s theorem, each of the  elements has an order which divides . This

implies that the sum of the Euler’s totient function of every divisor  of  equals :

If you enable the “Totient” option in the repetition tables above, you see the output of the Euler’s totient function for every divisor of the

group’s order in a separate row. The sum of all the values in this row plus  for the identity element, whose count is covered by the label ,

equals the number of elements in the group. Please note that the value in the totient row matches the number of elements with the given

order only if the group is cyclic.

Carmichael’s totient function λ
As mentioned earlier, not all multiplicative groups are cyclic. We use the Greek letter lambda to denote the function which returns the largest

order among the elements of the group: . This is known as Carmichael’s (totient) function, named after Robert Daniel

Carmichael (1879 − 1967). We shall see shortly that for prime powers, its value can be computed as follows:

For other integers,  is a composite group. Since the order of each element in  divides  as we’ll see below, the largest element order in a

direct product is the least common multiple of the largest element order in each of the composing groups:

Given my definition of Carmichael’s totient function as , which is different from but equivalent to what you encounter

elsewhere, and the definition of Euler’s totient function as , the multiplicative group  is cyclic if and only if .

According to the first formula,  if and only if  or . And since  is even for any prime power other

than ,  and thus  if neither  nor  equals . Therefore, multiplicative

groups are cyclic if and only if the modulus  equals , , , or  for a prime  and a positive integer . You can verify this for moduli up to

100 with the repetition table tool. (This is why the tool displays the prime factorization of the modulus above the table.) You can compute

Carmichael’s totient function of an integer by enabling the “Totients” option of the factorization tool.

m = p  ⋅1
e  1 … ⋅ p  l

e  l l Z  ≅m
× Z  ×

p  1
e  1

×

… × Z  

p  l

e  l
× φ(p  ⋅1

e  1 … ⋅ p  ) =l
e  l φ(p  ) ⋅1

e  1 … ⋅ φ(p  )l
e  l

m = p  ⋅1
e  1 … ⋅ p  

l
e  l m

φ(m) =  φ(p  ) =
i=1

∏
l

i
e  i

 p  −
i=1

∏
l

i
e  i p  =i

e  −1i
 p  ⋅

i=1

∏
l

i
e  −1i (p  −i 1)

a m a =  

φ(m)
m 1

A m

mA m n nA =  m 0
A m mA 1

G φ(∣G∣)

d n

d φ(d) n φ(d)
d d n n n

d n n

 φ(d) =
d ∣ n

∑ n, where φ(1) = 1.

1 φ(i)

λ(m) = max  ∣A∣A∈Z  m
×

λ(p ) =e
  { φ(p ) = 22

1 e e−2

φ(p ) = p (p − 1)e e−1

if p = 2 and e > 2,
otherwise.

Z  m
× Z  pe

× λ(p )e

λ(p  ⋅1
e  1 … ⋅ p  ) =

l
e  l lcm(λ(p  ), … ,λ(p  ))1

e  1
l
e  l

λ(m) = max  ∣A∣A∈Z  m
×

φ(m) = ∣Z  ∣m
× Z  m

× λ(m) = φ(m)
λ(p ) =e φ(p )e p = 2 e ≤ 2 φ(p ) =e p (p −e−1 1)

21 (φ(p  ),φ(p  )) ≥1
e  1

2
e  2 2 (φ(p  ),φ(p  )) <1

e  1
2
e  2 φ(p  ) ⋅1

e  1 φ(p  )2
e  2 p  1

e  1 p  2
e  2 21

m 2 4 pe 2pe p = 2 e

gcd lcm

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Prime_power
https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wiktionary.org/wiki/totient
https://en.wikipedia.org/wiki/Euler%27s_theorem
https://en.wikipedia.org/wiki/Lambda
https://en.wikipedia.org/wiki/Carmichael_function
https://en.wikipedia.org/wiki/Robert_Daniel_Carmichael
https://en.wikipedia.org/wiki/Prime_power


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2734 / 92

The math required to understand the formula for  is a bit advanced, which is why I cover it in several information boxes below. In fact, it was

rather difficult to find a satisfying explanation online. I adapted the following proof from Victor Shoup’s book starting on the pages 160 and 203.

You find an alternative approach here.

Order of prime power

Exponent of a multiplicative group

The so-called exponent of the multiplicative group  is the smallest positive integer  so that  for all elements  of the group.

Clearly,  divides the order of the group and is a multiple of the order of each element, including the largest one. In this box, we show that an

element of order  exists, which implies that  and  for any number  which is coprime with the modulus . This is in

fact how Carmichael’s totient function is usually defined. Since  for any positive integer , Carmichael’s totient function gives

a tighter exponent than Euler’s totient function in Euler’s theorem.

Let  be the prime factorization of the exponent . For each  between (and including)  and , there exists an element  so

that . If no such  could be found for some ,  would be an exponent smaller than  which results in  for all elements of the

group, which would contradict the minimality of . Given such an element  for each , the element  has order  because 

 and  (see the previous box). As all the prime powers of a prime factorization are

coprime with one another, the order of  is  according to an earlier theorem.

Why multiplicative groups modulo a prime are cyclic

Let’s start with the simplest case:  is cyclic if  is prime. In order to prove this, we need math which we haven’t covered yet:

1.  is a finite field over which polynomials can be defined. We’ll discuss finite fields later in this article.

2. A non-constant single-variable polynomial of degree  over any field evaluates to  for at most  distinct inputs. In other words, 

 with some coefficients  where  and at least  has at most  roots. Confusingly enough, this

statement is also known as Lagrange’s theorem. When formulated over the field of complex numbers, it is also known as the fundamental

theorem of algebra. We’ll prove it in the article about coding theory.

We learned in the previous box that  for all elements  of . This means that the polynomial  evaluates to 

for all  elements of . Since a polynomial of degree  over a field can have at most  roots,  cannot be smaller than 

. Therefore, , which implies that  is cyclic. Please note that this argument works only for fields (i.e. if the modulus is

prime). In , for example,  has 8 solutions.

Even though we know that  is cyclic for any prime  and that it has  generators, no formula is known for finding a generator

without searching. We’ll discuss how to find a generator for a multiplicative group in the last section of this chapter.

Since  is not a field for any integer , we need four additional facts to prove that  is cyclic for any odd prime .

Binomial coefficients and the binomial theorem

Since multiplication distributes over addition, we have that . More generally,

when evaluating the product of two sums, you add up all possible products of a term from the first sum and a term from the second sum. If

the two sums are the same, you get some products several times: . The

same is true for powers greater than . In the case of , each product consists of  instead of  terms. How many times do we obtain

the product  for some integer  between  and  when we expand ? The first  can be chosen from any of the  sums, the

second  from any of the remaining  sums, and so on until you have  options left for the  . Since we don’t care about the

order in which we picked the s in a specific product of s and s, we have to divide the integer that we obtained so far by the number of ways

in which  s can be ordered. The first  can be any of the  s, the second  any of the remaining  s, and so on.  is

the so-called factorial of , which is usually written with an exclamation mark as . The number of ways in which you can pick  s out of 

sums is:

λ(p )e

For any element  of a group , if  and  for some prime  and a positive integer , then . The reason for this is

that whatever the order of  is, it has to divide  given that . Only powers of  divide , but the order of  cannot have a

smaller exponent than  because .

A G A =p
e

I A =p
e−1

 I p e ∣A∣ = pe

A pe A =pe I p pe A

e A =pe−1
 I

Z  m
× n A =  

n
m 1 A

n

n λ(m) = n A =  

λ(m)
m 1 A m

λ(m) ≤ φ(m) m

 p  ∏i=1
l

i
e  i n i 1 l A  ∈i Z  m

×

A  =  i
n/p  i m 1 A  i i n/p  i n 1

n A  i i A  i

n/p  i

e  i

p  i
e  i

(A  ) =  i

n/p  i

e  i
p  i

e  i

m A  =  i
n

m 1 (A  ) =  i

n/p  i

e  i
p  i

e  −1i

m A  =  i
n/p  i m 1

 A  ∏i=1
l

i

n/p  i

e  i

n

Z  p
× p

= {0, … , p − 1}

d 0 d f(x) =
 c  x∑

i=0
d

i
i c  ,0 … , c  ∈d Z  p d > 0 c  =d  0 d

A =  

λ(p)
p 1 A Z  p

× f(X) =  p X −λ(p) 1 0
φ(p) = p − 1 Z  p

× λ(p) λ(p) λ(p)
φ(p) λ(p) = φ(p) Z  p

×

Z  24 X −2 1 =  24 0

Z  p
× p φ(p − 1)

Z  pe e > 1 Z  pe
× p

(a + b)(c + d) = a(c + d) + b(c + d) = ac + ad + bc + bd

(a + b) =2 (a + b)(a + b) = aa + ab + ba + bb = a +2 2ab + b2

2 (a + b)n n 2
a bi n−i i 0 n (a + b)n a n

a n − 1 n − i + 1 ith a

a a b

i a a i a a i − 1 a i ⋅ (i − 1) ⋅ … ⋅ 2 ⋅ 1
i i! i a n

Multiplicative Additive Both

Z  p

https://ef1p.com/number-theory/
http://localhost:4000/#information-boxes
https://shoup.net/ntb/ntb-v2.pdf
https://pi.math.cornell.edu/~mathclub/Media/mult-grp-cyclic-az.pdf
https://en.wikipedia.org/wiki/Proof_by_contradiction
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Polynomial#constant_polynomial
https://en.wikipedia.org/wiki/Polynomial#univariate
https://en.wikipedia.org/wiki/Degree_of_a_polynomial
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Zero_of_a_function
https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(number_theory)
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://en.wikipedia.org/wiki/Distributive_property
https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Exclamation_mark


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2735 / 92

This is known as the binomial coefficient, which is often written as the two numbers above each other in parentheses. Since no choice is left

for the  s, we don’t need to account for them. Instead of choosing the  s, we could choose the  s, though, which would give us

the same result as . Putting everything together, we get the binomial theorem:

Binomial coefficients of a prime are multiples of the prime

 for any prime  and any integer  strictly between  and  (i.e. ). Proof: Since  must be an integer

given what it counts,  divides . Since  is prime and all factors in  are smaller than , . By

Euclid’s lemma,  then has to divide . Therefore,  is a multiple of .

Congruence after exponentiation modulo a prime power

Given a prime  and a positive integer ,  implies  for any integers  and .

Proof:  means that  for some integer . Thus,  for some integer . (See the

binomial theorem if you struggle with this expansion.) As a consequence,  equals  up to some multiple of .

Congruence of 1 plus prime power after exponentiation

Given a prime  and a positive integer  with ,  implies  for any integers  and .

Proof: According to the previous box,  implies . Using the binomial theorem, we get:

Since  is divisible by  for , we conclude that  is divisible by  for . Since  for all , we can

ignore the terms of the second sum when computing modulo . By the requirement that , either  or . In both cases, 

. Therefore, we can ignore  as well, which leaves us with .

Why multiplicative groups modulo a power of an odd prime are cyclic

In this box, we want to show that  is cyclic for any odd prime  and any integer . We learned earlier that  is cyclic. Let  be a

generator of  and  be the order of  in . Since , . (If  is a multiple of , it is also a multiple of  because  is

a multiple of .) Therefore,  has to be a multiple of , which is the order of . Since  is the smallest positive integer so that , 

 has an order of  in . If we find an element  with an order of  in , then  has an order of 

 according to an earlier theorem.

We now show that  has an order of  in . According to the previous box,  implies . If ,  is

a multiple of , and thus . When we raise  to the power of  again, we get . This continues until 

. Since this is the first time that we reach the identity element, the order of  is .

Why multiplicative groups modulo a power of 2 greater than 4 are not cyclic

You can use the repetition table to verify that  and  are cyclic and that  has no generator. In this box, we first show that every

element in  for an integer  has an order of at most . This is an upper bound for . By showing that the element  has this

order, we establish the same value as a lower bound, which implies that  for .

We first observe that all even integers have the factor  in common with powers of  and that all odd integers are coprime with powers of .

Therefore, any element  can be written as  for some integer . Using our algebraic skills, 

. Since either  or  is even,  is an integer. Therefore, . For , we have seen that 

, which means that . By induction, we show that this is also true for any : 

, which means that .

 =(
i

n)  =
i(i − 1)(i − 2) … 1

n(n − 1)(n − 2) … (n − i + 1)
 for 0 ≤

i! (n − i)!
n!

i ≤ n

n − i b i a n − i b

=(
i
n)  (

n−i
n )

(a + b) =n
  a b

i=0

∑
n

(
i

n) i n−i

 =  (
i
p) p 0 p i 0 p 0 < i < p  =(

i
p)  

i!
p(p−1)(p−2)…(p−i+1)

i! p(p − 1)(p − 2) … (p − i + 1) p i! p (p, i!) = 1
i! (p − 1)(p − 2) … (p − i + 1)  ( i

p) p

p e a =  pe b a =  

p
pe+1 bp a b

a =  pe b a = b + cpe c a =p (b + cp ) =e p b +p pb cp +p−1 e dp2e d

ap bp pe+1

p e p >e 2 a =  pe+1 1 + pe a =  

p
pe+2 1 + pe+1 a b

a =  pe+1 1 + pe a =  

p
pe+2 (1 + p )e p

(1 + p ) =e p
  (p ) =

i=0

∑
p

(
i

p) e i 1 + p ⋅ p +e (   p ) +
i=2

∑
p−1

(
i

p) ei pep

 (
i
p) p 0 < i < p  p(

i
p) ei p1+2e 2 ≤ i < p 1 + 2e ≥ e + 2 e ≥ 1
pe+2 p >e 2 p ≥ 3 e ≥ 2

ep ≥ e + 2 pep (1 + p ) =  

e p
pe+2 1 + pe+1

Z  pe
× p e > 1 Z  p

× G

Z  p
× n G Z  pe

× G =  

n
pe 1 G =  

n
p 1 G −n 1 pe p pe

p n p − 1 Z  p
× n G =  

n
pe 1

Gn/(p−1) p − 1 Z  pe
× H pe−1 Z  pe

× H ⋅ Gn/(p−1) p (p −e−1 1) =
φ(p )e

H = 1 + p pe−1 Z  pe
× H =  p2 1 + p H =  

p
p3 1 + p2 e > 2 pe

p3 H =  

p pe 1 Hp p H =  

p2

p4 1 + p3 H =  

pe−1

pe+1

1 + p =  

e
pe 1 H pe−1

Z  2
× Z  4

× Z  8
×

Z  2e
× e > 2 2e−2 λ(2 )e 5

λ(2 ) =e 2e−2 e > 2

2 2 2
A ∈ Z  2e

× A = 1 + 2b b A =2 (1 + 2b) =2 1 + 4b +
4b =2 1 + 4b(1 + b) b 1 + b c =  2

b(1+b) A =2 1 + 8c e = 3 A =2e−2

1 + 2 ce A =  

2e−2

2e 1 e > 3 (A ) =2e−2 2 A =2e−1
(1 + 2 c) =e 2 1 + 2 ⋅

2 c +e 2 c =2e 2 1 + 2 (c +e+1 2 c )e−1 2 A =  

2e−1

2e+1 1

gcd

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Binomial_coefficient
https://en.wikipedia.org/wiki/Bracket#Parentheses
https://en.wikipedia.org/wiki/Binomial_theorem
https://proofwiki.org/wiki/Binomial_Coefficient_of_Prime
https://en.wikipedia.org/wiki/Carmichael_function#Extension_for_powers_of_two
https://en.wikipedia.org/wiki/Mathematical_induction


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2736 / 92

With the same argument as in the previous box, we prove that the element  has an order of  in . This time, though, we start with 

, which means that we have  for  before raising  to the power of  for the first time. As a consequence, we

lag one exponentiation behind when compared to the previous box, which is why the order of  is  instead of . Ignoring this and

working it out again, we get  when squaring   times according to this box. When , we have 

. When , . Therefore, .

Probabilistic primality tests
Let’s continue with something different: How do we know whether an integer is prime? For small integers, we can use trial division: Given an

integer , you can simply try to divide  by all possible factors up to . If you find a factor,  is composite. Otherwise,  is prime. For large

integers, trial division becomes infeasible because it scales with the square root of . Even though a deterministic algorithm is known to

determine in polynomial time whether an integer is prime, probabilistic primality tests are used in practice because they are much faster and

much simpler.

Probabilistic primality tests are based on some condition which is true for all integers strictly between  and  if  is prime. If  is composite, the

condition still holds for some but not all of these integers. By evaluating the condition/test repeatedly for random candidates from this set of

integers, we will eventually find a candidate for which the condition is false if we keep searching for long enough. Since this cannot happen if  is

prime, such a candidate is a so-called witness for the compositeness of . A candidate for which the condition is true even though  is composite is

a so-called liar as it lies about the true nature of .

false

true

Candidate Condition

Liar

Witness

The condition classifies candidates into liars and witnesses.

If we denote the set of integers strictly between  and  as , the set of liars for  as , and the set of witnesses for  as , we get the

following Venn diagram, where  and :

Liars
𝕃n 

Witnesses
𝕎n 

Candidates ℤn  0   ⁄ 

The classification visualized as sets.

If  is prime, the set of witnesses is empty and the liars aren’t lying. If  is composite, the probability that a random candidate  is a liar is 

. When we repeat the probabilistic primality test  times, the probability that we select  liars and therefore think that  is prime even

though it isn’t is . Since  if  is composite, we can lower the probability that we err when we declare  to be prime to an

arbitrarily small number. Unless we test all possible candidates, which is infeasible when  is sufficiently large, we cannot be certain, though. For

this reason, we call an integer which passes many rounds of a probabilistic primality test only a probable prime, which is in contrast to a provable

prime, whose primality has been established with certainty.

false

true

No witness for n found after t rounds?

n is probably prime

n is certainly composite

The two possible outcomes of a probabilistic primality test.

In the following, we’ll study two probabilistic primality tests: The Fermat primality test and the superior and thus preferable Miller-Rabin

primality test. When analyzing a probabilistic primality test, we want to know whether the ratio of liars to all candidates is smaller than some

bound for any composite . Since it’s difficult to reason about all the integers between  and , we’ll consider only the integers which are coprime

with  as they form a multiplicative group, which allows us to use everything we know about groups in our analyses. Since  if  is

composite, it follows that , which means that any upper bound which we prove for  also holds for . As

we’ll see, all the candidates which aren’t coprime with  are witnesses for both the Fermat and the Miller-Rabin primality test. If  is the product

of large prime numbers, the multiples of these prime factors are so rare that we cannot rely on finding one of them, though.

5 2e−2 Z  2e
×

5 =  23 1 + 22 H =  p3 1 + p2 p = 2 H p

5 2e−2 2e−1

5 =  

2i
23+i 1 + 22+i 5 i i = e − 2 5 =  

2e−2

2e+1 1 +
2 =  

e
2e 1 i = e − 3 5 =  

2e−3

2e 1 + 2 =  

e−1 2e 1 ∣5∣ = 2e−2

n n  n n n

n

0 n n n

n

n n

n

0 n Z  n
 0 n L  n n W  n

L  ∪n W  =n Z  n
 0 L  ∩n W  =n

n n A ∈ Z  n
 0

∣L  ∣/∣Z  ∣n n
 0 t t n

(∣L  ∣/∣Z  ∣)n n
 0 t ∣L  ∣/∣Z  ∣ <n n

 0 1 n n

n

n 0 n

n Z  ⊊n
× Z  n

 0 n

∣L  ∣/∣Z  ∣ ⪇n n
 0 ∣L  ∣/∣Z  ∣n n

× ∣L  ∣/∣Z  ∣n n
× ∣L  ∣/∣Z  ∣n n

 0

n n

∅

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/AKS_primality_test
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time
https://en.wikipedia.org/wiki/Primality_test#Probabilistic_tests
https://en.wikipedia.org/wiki/Witness_(mathematics)
https://en.wikipedia.org/wiki/Venn_diagram
https://en.wikipedia.org/wiki/Probable_prime
https://en.wikipedia.org/wiki/Provable_prime
https://en.wikipedia.org/wiki/Empty_set


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2737 / 92

Coprime
elements ℤ×  n 

Multiples of
prime factors

Candidates ℤn  0   ⁄ 

A different classification of the candidates,

where  and .

(|  if and only if  is prime.)

Fermat primality test
Fermat’s little theorem states that given a prime ,  for all . This can be used as the condition for a probabilistic primality test,

which is known as the Fermat primality test. The problem with this test is that there are infinitely many composite integers for which the theorem

holds as well. These integers are called Carmichael numbers. While Carmichael numbers are rare, they are common enough that you cannot

ignore them, especially in the adversarial context of cryptography. If a composite integer  is not a Carmichael number, then at least half of all the

elements in  are witnesses, which means that . (The  in  indicates that we are talking about the liars of the Fermat

primality test.) There are two ways to see why this is the case:

Pairing: There is at least one witness  as  would be a Carmichael number otherwise. Since  is a group,  maps each liar 

to a distinct witness:  (  by definition). Thus, .

Subgroup:  is a subgroup of  because  is not empty as  and  is closed as  for all 

. By Lagrange’s theorem,  for a . As  isn’t a Carmichael number,  and .

The following tool implements the Fermat primality test. You can enter a comma-separated list of candidates that you want to test the input 

with and specify the number of rounds which shall be performed with randomly chosen candidates. See the boxes below for inputs on which the

test fails with a high probability, which is why you should not use the Fermat primality test alone in practice.

12'345'678'910'987'654'321 is probably prime.

Candidate A: 2 3 5 7 11 13 17 19 23 29 31 37

A  % n: 1 1 1 1 1 1 1 1 1 1 1 1

Remarks on this tool

Input n: The input  has to be odd because the inputs are shared with the Miller-Rabin primality test, which cannot handle even inputs.

(For even inputs, the candidate 2 is always a witness as we’ll see in the next box.)

Seed: As many candidates as indicated by the “Rounds” slider are generated pseudo-randomly from the given seed. This allows you to

revisit earlier candidates and share interesting outputs with others. Another benefit is that you get a new set of candidates simply by

changing the seed, such as by clicking on the “Increment” button. If you implement a probabilistic primality test yourself, there’s no reason

to use a pseudo-random number generator (PRNG) like I did. In particular, using a known seed is dangerous in an adversarial setting. (The

design choice of generating candidates deterministically also made it easy to use the same candidates in the tool of the Miller-Rabin

primality test below.)

Abort: If you want to find liars for a particular input, you don’t want the tool to stop after encountering a witness. This is why the tool

allows you to disable the “Abort”, which you wouldn’t do if you care only about whether the input is probably prime.

Carmichael numbers

A composite integer  is a Carmichael number if and only if Carmichael’s totient function  divides . If this is the case, then 

 for all  which are coprime with  and some integer . These numbers are also named after Robert Daniel

Carmichael (1879 − 1967). The Fermat primality test fails to detect Carmichael numbers as composite only if all the chosen candidates are

coprime with the number which is being tested. If a candidate  is not coprime with the integer ,  has no multiplicative inverse, and the

closest you can get to a multiple of  is . In other words, if , then . Thus, . If you use the first

dozen prime numbers as candidates, which the tool above does by default, the Fermat primality test fails for only 2 out of the first 33

Carmichael numbers as given by this list from the On-Line Encyclopedia of Integer Sequences (OEIS): 252’601 = 41 · 61 · 101 and 410’041 =

41 · 73 · 137. All the other numbers on the list have a factor smaller than 41. As we will see in the next box, there’s a formula to obtain

Carmichael numbers which don’t have a small factor.

∣Z  ∣ ≤n
× ∣Z  ∣ <n

 0 n L  ⊆n Z  n
×

Z  ∣ =n
× ∣Z  ∣n

 0 n

n A =  

n−1
n 1 A ∈ Z  n

×

n

Z  n
× ∣L  ∣ ≤n

F
 ∣Z  ∣ <2

1
n
×

 2
n F L  n

F

W ∈ W  n
F n Z  n

× W L ∈ L  n
F

(L ⋅ W ) =  

n−1
n L ⋅n−1 W =  

n−1
n W =  

n−1 n 1 L =  

n−1
n 1 ∣L ∣ ≤n

F ∣W  ∣n
F

L  n
F Z  n

× L  n
F 1 ∈ L  n

F L  n
F (L  ⋅1 L  ) =  2

n−1
n L  ⋅1

n−1 L =  2
n−1

n 1
L  ,L  ∈1 2 L  n

F ∣L  ∣ =n
F

 ∣Z  ∣
c
1

n
× c ∈ Z  >0 n ∣L  ∣ <n

F ∣Z  ∣n
× c > 1

n

Input n: 12345678910987654321

Candidates: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37

Seed: 0 Increment

Rounds: 0

Abort:

   

n − 1

n

n λ(n) n − 1
A =  

n−1
n A =  

λ(n)⋅c
n 1 =  

c
n 1 A n c

A n A

n (A,n) gcd(A,n) > 1 A =  

n−1 n 1 L  =n
F Z  n

×gcd

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Fermat_primality_test
https://en.wikipedia.org/wiki/Pseudorandomness
https://en.wikipedia.org/wiki/Random_seed
http://localhost:4000/#interactive-tools
http://localhost:4000/#sharing-of-values
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://eprint.iacr.org/2018/749.pdf
https://en.wikipedia.org/wiki/Design_choice
https://en.wikipedia.org/wiki/Carmichael_number
https://en.wikipedia.org/wiki/Robert_Daniel_Carmichael
https://oeis.org/A002997
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2738 / 92

Coprime
elements ℤ×  n 

are all liars

Multiples of
prime factors
are witnesses

Candidates ℤn  0   ⁄ 

How the Fermat primality test classifies

the candidates of a Carmichael number.

Chernick’s Carmichael numbers

If you find an integer  so that , , and  are prime, then  is a Carmichael number since

 divides . (  and .) The small subset of

Carmichael numbers which are of this form are called Chernick’s Carmichael numbers, named after Jack Chernick (1911 − 1971), who lacks

an entry on Wikipedia. As we learned in the previous box, the Fermat primality test detects the compositeness of a Carmichael number only

if one of the tested candidates is a multiple of one of its prime factors. The probability that a random candidate is a liar, and we thus fail to

detect the compositeness of the Carmichael number  in any particular round, is . Since each round is independent from the

others, the failure rate after 100 rounds is .

k Carmichael number Prime factorization Failure rate per round Failure rate after 100 rounds

1 1’729 7 · 13 · 19 0.7500 0.0000

6 294’409 37 · 73 · 109 0.9508 0.0065

35 56’052’361 211 · 421 · 631 0.9913 0.4183

45 118’901’521 271 · 541 · 811 0.9932 0.5076

51 172’947’529 307 · 613 · 919 0.9940 0.5497

55 216’821’881 331 · 661 · 991 0.9945 0.5741

56 228’842’209 337 · 673 · 1’009 0.9946 0.5798

100 1’299’963’601 601 · 1’201 · 1’801 0.9970 0.7369

… … … … …

511 173’032’371’289 3’067 · 6’133 · 9’199 0.9994 0.9420

710 464’052’305’161 4’261 · 8’521 · 12’781 0.9996 0.9579

The first Chernick’s Carmichael numbers according to this list from the On-Line Encyclopedia of Integer Sequences (OEIS).

Carmichael numbers are a product of at least three distinct primes

It is no coincidence that Chernick’s formula for Carmichael numbers is a product of three prime numbers. In this box we’ll show that every

Carmichael number is a product of at least three distinct primes. Let  be the prime factorization of an arbitrary Carmichael

number. This factorization has the following four properties (see page 308 in Victor Shoup’s book):

1.  is odd, i.e.  for all : If  was even,  would be odd and the coprime element  would be a witness

because  for any odd integer . Since  is a Carmichael number, this cannot be the case.

2.  for every : The composite group  is isomorphic to the direct product of . Since  is a Carmichael

number,  for every . Since the isomorphism maps  to , it has to be the case that 

 for every . Since  is odd according to the previous point,  is cyclic, and thus  has to be a multiple of 

. With ,  would be a multiple of  and thus  would also be a multiple of .

However, given that  is a factor of ,  has to be  because  and  cannot both be multiples of .

3.  divides  for all : I explained in the previous point why  has to be a multiple of . Now that we

know that , it follows that  is a multiple of .

4. : By definition,  has to be composite and thus . Suppose , which means that  is the product of two primes. According to

the previous point,  divides . Given that ,  has to divide . (

can be a multiple of  only if  is a multiple of .) By a symmetric argument,  has to divide . However, two integers can be

multiples of each other only if they are the same. Since our notation for the prime factorization requires the factors to be distinct, 

cannot equal . Hence,  is the product of at least three distinct primes.

k 6k + 1 12k + 1 18k + 1 n = (6k + 1)(12k + 1)(18k + 1)
(n) = (6k, 12k, 18k) = 36k n − 1 = 1296k +3 396k +2 36k 1296/36 = 36 396/36 = 11

n  =∣Z  ∣n 0
∣L  ∣n

F

 

n−1
(n)

(  )
n−1
φ(n) 100

n = p  ⋅1
e  1 … ⋅ p  l

e  l

n p  =i  2 i ∈ {1, … , l} n n − 1 −1 =  n n − 1
−1 =  

d
n −1 =  n 1 d n

e  =i 1 i ∈ {1, … , l} Z  n
× Z  , … ,Z  

p  1
e  1

×
p  l

e  l

× n

A =  

n−1
n 1 A ∈ Z  n

× 1 ∈ Z  n
× (1, … , 1) ∈ Z  ×

p  1
e  1

× … × Z  

p  l

e  l

×

A =  

n−1
p  i

e  i 1 A ∈ Z  

p  i

e  i
× p  i Z  

p  i

e  i
× n − 1

∣Z  ∣ =
p  i

e  i
× (p  ) =i

e  i p  (p  −i
e  −1i

i 1) e  >i 1 p  (p  −i
e  −1i

i 1) p  i n − 1 p  i

p  i n e  i 1 n n − 1 p  i

p  −i 1 n − 1 i ∈ {1, … , l} n − 1 p (p  −i
e  −1i

i 1)
e  =i 1 n − 1 p  −i 1

l ≥ 3 n l > 1 l = 2 n

p  −1 1 n − 1 n − 1 = p  p  −1 2 1 = (p  −1 1)p  +2 (p  −2 1) p  −1 1 p  −2 1 a ⋅ b + c

a c a p  −2 1 p  −1 1
p  1

p  2 n

λ lcm

φ

φ

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Carmichael_number#Discovery
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Failure_rate
https://oeis.org/A033502
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
https://shoup.net/ntb/ntb-v2.pdf


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2739 / 92

The second and the third point are sufficient for  to be a Carmichael number because they ensure that  divides  as required by

our definition. This is known as Korselt’s criterion, named after Alwin Reinhold Korselt (1864 − 1947).

Density of Carmichael numbers and prime numbers

For a sufficiently large integer , there are at least  Carmichael numbers smaller than . On the other hand, the number of primes smaller

than  is approximately , where  is the natural logarithm of . To give you an idea for how much rarer Carmichael numbers are

than prime numbers: There are 2’220’819’602’560’918’840 ≈ 2 · 10  prime numbers and only 8’220’777 ≈ 8 · 10  Carmichael numbers

below 100’000’000’000’000’000’000 = 10 .

Integers for which half of all coprime elements are Fermat liars

As we saw above, the Fermat liars  form a subgroup of the coprime elements  for all integers  greater than . Due to Lagrange’s

theorem,  is an integer. This ratio is known as the index of the subgroup. If the index of  is  and  is composite,  is a

Carmichael number. If a composite  is not a Carmichael number, the index of  has to be at least . There are integers for which half of all

coprime elements are liars in the Fermat primality test:

n Prime factorization Number of liars

Ratio of liars 

to all candidates

15 3 · 5 4 0.2857

91 7 · 13 36 0.4000

703 19 · 37 324 0.4615

1’891 31 · 61 900 0.4762

2’701 37 · 73 1’296 0.4800

11’305 5 · 7 · 17 · 19 3’456 0.3057

12’403 79 · 157 6’084 0.4906

13’981 11 · 31 · 41 6’000 0.4292

… … … …

The odd integers for which  according to this list from the On-Line Encyclopedia of Integer Sequences (OEIS).

If we want the ratio of Fermat liars to all candidates (i.e. ) to be as close to 0.5 as possible, we’re interested in those integers which

are the product of just two primes. Such integers are known as semiprimes. (The more primes there are in the prime factorization of , the

smaller  becomes.) It turns out that the semiprimes in the above list are of the form  where  and  are prime and .

The beginning of the list is the same, and we approach 0.5 for larger values of :

n Prime factorization Number of liars

Ratio of liars 

to all candidates

… … … …

2’701 37 · 73 1’296 0.4800

12’403 79 · 157 6’084 0.4906

18’721 97 · 193 9’216 0.4923

38’503 139 · 277 19’044 0.4946

49’141 157 · 313 24’336 0.4952

79’003 199 · 397 39’204 0.4962

… … … …

1’373’653 829 · 1’657 685’584 0.4991

1’537’381 877 · 1’753 767’376 0.4991

The semiprimes  so that  according to this list from the On-Line Encyclopedia of Integer Sequences (OEIS).

Therefore, 0.5 is indeed the best bound for the ratio of Fermat liars to all candidates of composite non-Carmichael numbers.

n (n) n − 1

x x1/3 x

x  log  (x)e

x log  (x)e x

18 6

20

L  n
F Z  n

× n 1
∣Z  ∣/∣L  ∣n

×
n
F L  n

F 1 n n

n L  n
F 2

 =∣Z  ∣n
×

∣L  ∣n
F

 2
1

∣L  ∣/∣Z  ∣n
F

n
 0

n

 

n−1
(n)/2 n = p ⋅ q, p q q = 2p − 1

n

n = p ⋅ q q = 2p − 1

λ

φ

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Necessity_and_sufficiency#Sufficiency
https://en.wikipedia.org/wiki/Carmichael_number#Korselt's_criterion
https://en.wikipedia.org/wiki/Alwin_Korselt
https://en.wikipedia.org/wiki/Carmichael_number#Distribution
https://en.wikipedia.org/wiki/Prime-counting_function
https://en.wikipedia.org/wiki/Natural_logarithm
https://oeis.org/A191311
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
https://en.wikipedia.org/wiki/Semiprime
https://oeis.org/A129521
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2740 / 92

Miller-Rabin primality test
We can improve upon the Fermat primality test by making the condition in our test stricter: When computing  with the square-and-

multiply algorithm, we can require that whenever you reach  by squaring some number, this number must be either  or . Given our

knowledge, we have three ways to see why  and  are the only possible square roots of  in  if  is prime:

Euclid’s lemma: We want to find the possible solutions for  in . By taking the  to the left side, we get , which we can

refactor into . Since the product of  and  is a multiple of the prime ,  or  has to be a multiple of 

according to Euclid’s lemma. If  is a multiple of , then . If not, then  has to equal .

Cyclic group: Since  is prime,  is cyclic. As I argued earlier, there can be only a single element half-way through the cycle.

Polynomial: Even though this is not officially part of our toolkit yet, I mentioned earlier that  is a finite field if  is prime and that a

polynomial over a field can have no more roots than its degree. Therefore, the polynomial  can evaluate to  for at most two

distinct , which are  and .

After checking that  is odd, we know that  is even. (If you want to be able to handle the case where , you have to handle it explicitly

with a separate conditional.) Since  for all  by Fermat’s little theorem,  has to equal either  or  up to a multiple of  if 

is prime. If this is not the case, we know for sure that  is composite. If  and  is still even, we can continue the process with  and

so on. Instead of calculating such large exponentiations repeatedly, we write  as  with an integer  and an odd integer . For a

candidate , we calculate . If the result is , we can continue with the next candidate because the result remains  when we square it

repeatedly until we arrive at . If the result is , we can also continue with the next candidate because we get  after

squaring the result once. For any other result, we square the result and check what we have then. If the new result is , we know that  is

composite because the previous result was neither  nor . If the new result is , we can continue with the next candidate because we’re

certain that  will be . If necessary, we square the first result (i.e. )  times. If we still haven’t got  at this point, we know that  is

composite because even if we would get  at  when squaring  one more time, we would arrive from a number other than  or .

This algorithm is known as the Miller-Rabin primality test, named after Gary Lee Miller (I couldn’t figure out when this gentleman was born) and

Michael Oser Rabin (born in 1931). As for any probabilistic primality test, liars still exist. (If there were no liars, the test wouldn’t be probabilistic

and we wouldn’t have to check more than one candidate.) Unlike the Fermat primality test, however,  for any odd composite  as

we will prove below. Any Miller-Rabin liar is also a Fermat liar (i.e. ), so for any candidates for which the Miller-Rabin primality test

fails, the Fermat primality test fails as well. Given that the Miller-Rabin primality test doesn’t struggle with Carmichael numbers, that it has a

smaller bound for the ratio of liars to all candidates than the Fermat primality test (  instead of , which the latter achieves only for non-

Carmichael numbers), and that it computes fewer squares per round than the Fermat primality test, the Miller-Rabin primality test is strictly

preferable to the Fermat primality test.

The following tool implements the Miller-Rabin primality test. Its input is synchronized with the Fermat primality test above so that you can

compare the outputs of the two tests. (This is best done on this separate page, which includes only the tools of this article.) Since  and  are

always liars, this tool samples the random candidates between these two values. For this reason, the smallest integer that you can test is . You

can use the up and down arrows on your keyboard to step through the odd inputs when the cursor is in the field of the input . The tool displays 

 only for your convenience. When you calculate modulo , you get , of course.

12'345'678'910'987'654'321 is probably prime.

n = 2  · d + 1

12'345'678'910'987'654'321 = 2  · 771'604'931'936'728'395 + 1

Candidate A A  % n A  % n A  % n A  % n

2 1

3 3'919'199'263'467'263'698 9'967'901'397'488'111'931 −1

5 1

7 3'707'150'871'678'934'042 10'183'580'126'972'188'736 2'377'777'513'499'542'390 −1

11 9'967'901'397'488'111'931 −1

13 477'990'353'888'317'855 2'162'098'784'015'465'585 2'377'777'513'499'542'390 −1

17 10'192'383'726'506'864'521 8'426'479'647'520'390'623 9'967'901'397'488'111'931 −1

19 8'638'528'039'308'720'279 10'183'580'126'972'188'736 2'377'777'513'499'542'390 −1

A =  

n−1
n 1

1 1 −1
1 −1 1 Z  n

× n

x x =  

2
n 1 1 x −2 1 =  n 0

(x − 1)(x + 1) =  n 0 x − 1 x + 1 n x − 1 x + 1 n

x − 1 n x =  n 1 x −1

n Z  n
×

Z  n n

f(x) = x −2 1 0
x 1 −1

n n − 1 n = 2
A =  

n−1
n 1 A ∈ Z  n

× A  2
n−1

1 −1 n n

n A =  

 2
n−1

n 1  2
n−1 A  4

n−1

n − 1 2 dc c ≥ 1 d

A A    nd 1 1
(A ) =  

d 2c
n A =  

n−1
n 1 −1 1

1 n

1 −1 −1
An−1 1 Ad c − 1 −1 n

1 An−1 A  2
n−1

−1 1

∣L  ∣/∣Z  ∣ ≤n
MR

n
 0

 4
1 n

L  ⊆n
MR L  n

F

 4
1

 2
1

1 n − 1
5

n

−1 n n − 1

Input n: 12345678910987654321

Candidates: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37

Seed: 0 Increment

Rounds: 0

Abort:

   

c

4

2  · d0 2  · d1 2  · d2 2  · d3

mod

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Square_(algebra)
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Zero_of_a_function
https://en.wikipedia.org/wiki/Degree_of_a_polynomial
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
https://en.wikipedia.org/wiki/Gary_Miller_(computer_scientist)
https://en.wikipedia.org/wiki/Michael_O._Rabin
http://localhost:4000/number-theory/tools/#fermat-primality-test
https://en.wikipedia.org/wiki/Arrow_keys
https://en.wikipedia.org/wiki/Cursor_(user_interface)


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2741 / 92

Candidate A A  % n A  % n A  % n A  % n

23 11'867'688'557'099'336'466 2'162'098'784'015'465'585 2'377'777'513'499'542'390 −1

29 2'153'295'184'480'789'800 8'426'479'647'520'390'623 9'967'901'397'488'111'931 −1

31 3'707'150'871'678'934'042 10'183'580'126'972'188'736 2'377'777'513'499'542'390 −1

37 3'707'150'871'678'934'042 10'183'580'126'972'188'736 2'377'777'513'499'542'390 −1

Small prime numbers as candidates

It turns out that the first  prime numbers form excellent candidates for the Miller-Rabin primality test:

l Candidates Smallest composite integer for which the test fails

1 2 2’047 > 2

2 2, 3 1’373’653 > 2

3 2, 3, 5 25’326’001 > 2

4 2, 3, 5, 7 3’215’031’751 > 2

5 2, 3, 5, 7, 11 2’152’302’898’747 > 2

6 2, 3, 5, 7, 11, 13 3’474’749’660’383 > 2

7 2, 3, 5, 7, 11, 13, 17 341’550’071’728’321 > 2

8 2, 3, 5, 7, 11, 13, 17, 19 341’550’071’728’321 > 2

9 2, 3, 5, 7, 11, 13, 17, 19, 23 3’825’123’056’546’413’051 > 2

10 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 3’825’123’056’546’413’051 > 2

11 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 3’825’123’056’546’413’051 > 2

12 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 318’665’857’834’031’151’167’461 > 2

13 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 3’317’044’064’679’887’385’961’981 > 2

The smallest integers for which the first  prime numbers are not enough to detect their compositeness 

according to this list from the On-Line Encyclopedia of Integer Sequences (OEIS).

Power function and its preimage

The function  computes the  power of any element  of the multiplicative group . For any subset , we denote the

so-called preimage of  under  as . (As we will revisit later,  is the so-called kernel of .) We

need the following property in order to prove the Monier-Rabin bound on the number of liars: If  is cyclic, .

Proof: Let  be a generator of the cyclic group, then for any , there’s an integer  so that . We want to determine the

number of  for which . Now  can equal  only if  is a multiple of . How many  are there

so that ? As we saw earlier, the answer is .

Monier-Rabin bound on the number of liars

Louis Monier (born in 1956) and Michael Oser Rabin (born in 1931) proved independently in 1980 that  for any odd

composite integer . As a consequence, the probability that an odd composite integer  is mislabeled as a probable prime after  rounds of

the Miller-Rabin primality test with random candidates is at most . I adapted the following proof from page 309 of Victor Shoup’s book.

You find similar approaches here and here in case you cannot follow my explanations.

After checking that  is odd and aborting the Miller-Rabin primality test otherwise, there are two cases to consider:

1.  for some odd prime  and an integer : Since every Miller-Rabin liar is also a Fermat liar (i.e. ), any upper bound on

the latter also applies to the former (i.e. if , then ). An element  is a Fermat liar if and only if .

Since multiplicative groups modulo a power of an odd prime are cyclic, there are  Fermat liars in 

according to the previous box. Using the definitions of Euler’s totient function  and , we get . Clearly, 

divides . Since ,  divides also . (It’s obvious when putting it

as  for .) Since  is not a multiple of  (as it is one more than a multiple of ),  is the greatest

common divisor of  and . Finally,  because  for any 

 and . Thus, . This bound is reached for  (i.e.  and ), where two out of eight elements (namely 

2  · d0 2  · d1 2  · d2 2  · d3

l

10

20

24

31

40

41

48

48

61

61

61

78

81

l

f  (X) =  y n X
y yth X Z  n

× S ⊆ Z  n
×

S f  y f  (S) =y
−1 {X ∈ Z  ∣n

× f  (X) ∈y S} f  ({1})y
−1 f  y

Z  n
× ∣f  ({1})∣ =y

−1 (y, (n))
G X ∈ Z  n

× x X =  n G
x

X ∈ Z  n
× X =  

y
n (G ) =  

x y
n 1 Gz 1 z ∣G∣ = φ(n) x ∈ Z  φ(n)

x ⋅ y =  φ(n) 0 gcd(y,φ(n))

∣L  ∣/∣Z  ∣ ≤n
MR

n
 0

 4
1

n n t

(  )4
1 t

n

n = pe p e > 1 L  ⊆n
MR L  n

F

∣L  ∣ ≤n
F

 4
n−1 ∣L  ∣ ≤n

MR
 4

n−1 L ∈ Z  n
× L =  

n−1
n 1

∣f  ({1})∣n−1
−1 = (n − 1, (n)) Z  n

×

φ n gcd(p −e 1, p (p −e−1 1)) p − 1
p (p −e−1 1) (p − 1)  p∑i=0

e−1 i = (  p ) −∑i=1
e i (  p )∑i=0

e−1 i = p −e 1 p − 1 p −e 1
(m + 1) =  

e
m 1 m = p − 1  p∑i=0

e−1 i p p p − 1
p −e 1 p (p −e−1 1) p − 1 = (p −e 1)/(  p ) =∑i=0

e−1 i
 ≤

p +…+1e−1
n−1

 4
n−1 p +e−1 1 ≥ 4

p ≥ 3 e ≥ 2 ∣L  ∣ ≤n
F ∣Z  ∣/4n

 0 n = 9 p = 3 e = 2 1

gcd φ

gcd φ

https://ef1p.com/number-theory/
https://oeis.org/A014233
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Exponentiation#Power_functions
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Image_(mathematics)#Inverse_image
https://en.wikipedia.org/wiki/Kernel_(algebra)
https://en.wikipedia.org/wiki/Louis_Monier
https://en.wikipedia.org/wiki/Michael_O._Rabin
https://shoup.net/ntb/ntb-v2.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf
https://www.cis.upenn.edu/~jean/RSA-primality-testing.pdf


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2742 / 92

and ) are Miller-Rabin liars. This is the reason why I write  instead of  as  and 

.

2.  for  distinct odd primes  and positive integers : This case is more complicated because  is generally not

closed under multiplication. (For example,  and  are liars for , but  is a witness for the compositeness of .) The

composite group  is isomorphic to the direct product of . Let  for an integer  and an odd integer .

Similarly, , where  and  is odd. We define  as the smallest integer in the set . Since  is even

for any odd prime , . Next, we’ll prove a series of statements:

 for all . If , this is the case because every Miller-Rabin liar is also a Fermat liar (i.e. ). If , 

 for some index . If  for some , we must have  for some  greater than or equal to  and smaller than 

 because  wouldn’t be a Miller-Rabin liar otherwise. If  is a multiple of , it is also a multiple of . Therefore, 

implies that . Since  and , the order of  is  in  according to an earlier theorem.

However, the order of  is , which means that  does not divide  because . Since this is a contradiction,

there is no liar  for which .

. It follows from the previous point and the definition of a Millar-Rabin liar that  for all 

. Therefore, . Let  denote all the elements of . Then 

 cannot be smaller than  because it contains at least the  elements .

These elements are distinct because all preimages from  to  belong to  and you get different results when you combine the

same element with different elements in a group.

 for any positive integer . Since , the number of elements in  which map

to  when being raised to the  power is given by the product of the number of elements which do the same in each of the groups 

to . Since each  is a cyclic group, the formula from the previous box can be used.

. According to the previous point, . Since  and  for 

, we have that . (This is why  has to be smaller than or equal to

each ; you wouldn’t be able to extract the factor  in each of the groups otherwise.)

 because for any  for which ,  since .

If follows from these statements that  since 

 given that . There are two cases to consider:

: This implies that . Since  and , we have .

: According to an earlier theorem,  cannot be a Carmichael number. Since in this case at most half of all coprime elements can be

Fermat liars, we have that . Thus, .

Sophie Germain and safe primes
A prime number  is a Sophie Germain prime, named after Marie-Sophie Germain (1776 − 1831), if  is also prime. A prime number  for

which  is also prime is called a safe prime. Safe primes are important in cryptography because the difficulty of solving the discrete-

logarithm problem is bounded by the largest prime factor of the group’s order as we will see later.

Sophie Germain prime 2 3 5 11 23 29 41 53 83 89 …

Safe prime 5 7 11 23 47 59 83 107 167 179 …

The first ten Sophie Germain primes with their corresponding safe primes.

Search for a probable prime
How do we find large prime numbers that we can use for cryptographic applications? Since prime numbers are sufficiently dense, we can

repeatedly check with the Miller-Rabin primality test whether a randomly generated integer of the desired length is a probable prime until we

find one. The following tool implements this random search for a probable prime. If you need a safe prime, the tool generates a random number 

until both  and  are probably prime. In order to let you see what the tool is doing, the tool waits for a fraction of a second after each

attempt. You should disable this delay when generating large prime numbers.

Bits: 32 Safe prime: Generator: Delay: 0.20 Generate

Attempts: 4

Elapsed time: 3.91 s

8 ∣L  ∣/∣Z  ∣ ≤n
MR

n
 0

 4
1 ∣L ∣/∣Z  ∣ ≤n

MR
n
×

 4
1 φ(9) = 6 ∣L  ∣/∣Z  ∣ =9

MR
9
×

 >6
2

 4
1

n = p  ⋅1
e  1 … ⋅ p  l

e  l l > 1 p  i e  i L  n
MR

8 18 n = 65 8 ⋅ 18 =  65 14 n

Z  n
× Z  , … ,Z

p  1
e  1

×
p  l

e  l
× n − 1 = 2 dc c ≥ 1 d

φ(p  ) =i
e  i 2 d  

c  i
i 1 ≤ i ≤ l d  i a {c, c  , … , c  }1 l φ(p  )i

e  i

p  i a ≥ 1

L =  

2 da
n 1 L ∈ L  n

MR a = c L =  

n−1
n 1 a < c a =

c  j j L =  

2 db n 1 L ∈ L  n
MR L =  

2 db
n −1 b a

c L L +2 d
b

1 n p  j

e  j L =  

2 d
b

n −1
L =  

2 db

p  j

e  j −1 (L ) =  

d 2b
p  j

e  j −1 (L ) =  

d 2b+1

p  j

e  j 1 Ld 2b+1 Z  

p  j

e  j
×

Z  

p  j

e  j
× 2 d  

c  j
j ∣L ∣d ∣Z  ∣

p  j

e  j
× b + 1 > c  j

L ∈ L  n
MR L =  

2 d
a

n 1

∣L  ∣ ≤n
MR 2 ⋅ ∣f ({1})∣2 da−1

−1 L =  

2 da−1

n ±1 L ∈
L  n
MR L  ⊆n

MR f  ({1}) ∪2 da−1
−1 f  ({−1})2 da−1

−1 {U  ,U  ,U  , … ,U  }1 2 3 v f  ({−1})2 da−1
−1

f  ({1})2 da−1
−1 f  ({−1})2 da−1

−1 v {U  ⋅1 U  ,U  ⋅1 1 U  ,U  ⋅2 1 U  , … ,U  ⋅3 1 U  }v
U  1 U  v Z  n

×

∣f  ({1})∣ =y
−1

 gcd(y, 2 d  )∏i=1
l c  i

i y Z  ≅n
× Z  ×

p  1
e  1

× … × Z  

p  l

e  l

× Z  n
×

1 yth Z  

p  1
e  1

×

Z  

p  l

e  l
× Z  

p  i

e  i
×

∣f  ({1})∣ =2 da
−1 2 ⋅l ∣f  ({1})∣2 da−1

−1 ∣f  ({1})∣ =2 da
−1

 gcd(2 d, 2 d  )∏i=1
l a c  i

i a ≥ 1 c  ≥i a i =
1, … , l ∣f  ({1})∣ =2 da

−1 2 ⋅l  gcd(2 d, 2 d  ) =∏i=1
l a−1 c  i

i 2 ⋅l ∣f  ({1})∣2 da−1
−1 a

c  i 2

∣f  ({1})∣ ≤2 da
−1 ∣f  ({1})∣2 dc

−1 X ∈ Z  n
× X =  

2 da
n 1 X =  

2 dc
n 1 c ≥ a

∣L  ∣ ≤n
MR 2 ⋅−l+1 ∣f  ({1})∣n−1

−1 ∣L  ∣ ≤n
MR 2 ⋅ ∣f  ({1})∣ =2 da−1

−1 2 ⋅ 2 ⋅−l ∣f  ({1})∣ ≤2 da
−1 2 ⋅−l+1

∣f  ({1})∣ =2 dc
−1 2 ⋅−l+1 ∣f  ({1})∣n−1

−1 2 d =c n − 1

l ≥ 3 ∣L  ∣ ≤n
MR ∣f  ({1})∣/4n−1

−1 ∣f  ({1})∣ ≤n−1
−1 ∣Z  ∣n

× ∣Z  ∣ <n
× ∣Z  ∣n

 0 ∣L  ∣ <n
MR ∣Z  ∣/4n

 0

l = 2 n

∣f  ({1})∣ =n−1
−1 ∣L  ∣ ≤n

F ∣Z  ∣/2n
× ∣L  ∣ ≤n

MR 2 ⋅−1 ∣f  ({1})∣ <n−1
−1 ∣Z  ∣/4n

 0

p q = 2p + 1 q

p = (q − 1)/2

p

p q = 2p + 1

   

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes
https://en.wikipedia.org/wiki/Sophie_Germain
https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes
https://oeis.org/A005384
https://oeis.org/A005385


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2743 / 92

p = 3'331'120'901

Clear

Primality test optimizations

Since this algorithm tests many integers for their primality, the performance of the prime number generation is determined by the

performance of the employed primality test. Here are some ways to reject composite inputs as quickly as possible:

Trial division by small primes: Since every second number is a multiple of 2, every third number number is a multiple of 3, and so on, you

can rule out a substantial fraction of inputs using trial division by small prime numbers. (To check that an input is odd, you have to verify

only that the least-significant bit is 1.)

Coprimality with product of small primes: You can check that an input is not a multiple of many small primes “at once” by checking that

the input is coprime with their product using the Euclidean algorithm. The product of the first  prime numbers is known as the primorial

number , where  is the  prime number. For example, the product of the first 40 prime numbers is

166'589'903'787'325'219'380'851'695'350'896'256'250'980'509'594'874'862'046'961'683'989'710 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23

· 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113 · 127 · 131 · 137 · 139 · 149 · 151 · 157 ·

163 · 167 · 173 (see the last row of this table).

Incremental instead of random search: Instead of choosing the next input randomly, you can increment the previous input by a known

value. This has the advantage that you no longer need to perform the trial divisions if you store the remainders from the previous attempt.

See the note 4.51 in the Handbook of Applied Cryptography for a more detailed discussion of this approach. (The tool above increments

even inputs by 1 to make them odd before performing any primality checks.)

Expected number of attempts

As I mentioned earlier, there are approximately  prime numbers smaller than . Since half of all the integers are odd, the probability

that a random odd integer smaller than  is prime is around . Denoting the number of bits we are interested in as , we get 

. Since  means that , we can raise both sides by  to get . Thus,  and 

, which is one of the logarithmic identities. The number of independent trials needed to get a success is given by the geometric

distribution. If the probability of success in each attempt is , it takes on average  attempts. As a consequence, the expected number of

attempts needed to find a prime number with  bits is . The probability of finding a safe prime is , which means

that it takes  attempts on average. The following table lists the expected number of attempts for lengths in the range

of the tool above.

Number of bits Expected number of attempts Squared for safe prime

8 3 8

16 6 31

32 11 123

64 22 492

128 44 1’968

256 89 7’872

512 177 31’487

1’024 355 125’948

2’048 710 503’791

The expected number of attempts to find a (safe) prime of the given length rounded to the next integer.

While I implemented some of the optimizations mentioned in the previous box, the tool is not fast enough to find a safe prime with 2’048 bits

in a reasonable amount of time. I still wanted to support this length so that you get a sense for how large the prime number has to be in order

to get a reasonable amount of security. (Finding a normal prime of this length is no problem.)

Required number of Miller-Rabin rounds

Since the Miller-Rabin primality test is a probabilistic primality test, what is the probability that the random search for a prime number

returns a composite number? How many rounds do we have to perform in the Miller-Rabin primality test to push this probability below a

certain value, such as ? You may think that this error probability is given by the Monier-Rabin bound on the number of liars, namely 

l

p  # =l  p  ∏i=1
l

i p  i ith

 log  (x)e

x x

x  /  =log  (x)e

x
2
x

 log  (x)e

2 l

 log  (2 )e
l

2 s = log  (2 )e
l e =s 2l 1/l e =s/l 2 log  (2) =e s/l s = l ⋅ log  (2) =e

log  (2 )e
l

P  

P
1

l l ⋅ =2
log  (2)e 0.34657 ⋅ l ≈  l3

1 P 2

(l ⋅  ) =2
log  (2)e 2 0.12 ⋅ l2

(  )2
1 80 (  )4

1 t

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Bit_numbering
https://en.wikipedia.org/wiki/Primorial
https://en.wikipedia.org/wiki/Primorial#Table_of_primorials
https://cacr.uwaterloo.ca/hac/about/chap4.pdf
https://en.wikipedia.org/wiki/Prime-counting_function
https://en.wikipedia.org/wiki/Logarithm#Logarithmic_identities
https://en.wikipedia.org/wiki/Bernoulli_trial
https://en.wikipedia.org/wiki/Geometric_distribution


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2744 / 92

, where  denotes the number of rounds. However, this bound limits the probability that the Miller-Rabin primality test declares an input to

be prime given that the input is composite. Using mathematical notation, this is , where  denotes the event that the

input is declared prime after  rounds of the Miller-Rabin primality test and  represents the event that the input is composite. (  is

a conditional probability, which is defined as .) What we are interested in here, though, is the probability that an input

is composite given that the Miller-Rabin primality test declared it to be prime after  rounds: . Using Bayes’ theorem, we have

where  is the ratio of the inputs which are prime. Since the Miller-Rabin primality test declares all inputs which are prime to be prime, 

. If  is small, the probability  can be considerably larger than . (For example, the probability of error is  if the set

of candidates contains only composite numbers.) However, the fraction of Miller-Rabin liars is far smaller than  for most numbers.

According to the note 4.49 in the Handbook of Applied Cryptography, it has been shown that just 6 rounds of the Miller-Rabin primality test

are needed to push the probability that the random search for a 512-bit prime returns a composite number below . For 1’024 bits, 3

rounds are enough, and for 2’048 bits, it suffices to perform 2 rounds. Since you perform on average only a bit more than one round of the

Miller-Rabin primality test for unsuccessful candidates even in the worst case, choosing a bigger  won’t affect the performance of the

random search by much. The situation is different when searching for safe primes, but a better optimization is to increase your confidence

that both  and  are prime in parallel instead of gaining high certainty that  is prime before even considering . (I didn’t

implement this optimization in the above tool because it wouldn’t match the visualization, including the counter of how many times  was

prime.)

Please note that this discussion applies only to the case where the candidates are sampled randomly. If you test an input which is provided by

an untrusted party, you can rely only on the worst-case error bound of . Not considering the adversarial setting has been an issue in

many cryptography libraries. If you verify that an integer provided by someone else is prime, you should use 64 rounds to push the risk of

being exploited below . Alternatively, you can use the Baillie-PSW primality test, which is named after Robert Baillie, Carl Bernard

Pomerance (born in 1944), John Lewis Selfridge (1927 − 2010), and Samuel Standfield Wagstaff Jr. (born in 1945). This primality test consists

of a single round of the Miller-Rabin primality test with the candidate 2 followed by the Lucas probable prime test, which is named after

François Édouard Anatole Lucas (1842 − 1891).

Performance impact of the number of rounds

Since at most  of all candidates of a composite number are liars, the probability that you have to perform a second round of the Miller-Rabin

primality test after performing a first round with a random candidate is at most  for any composite number. The probability that you need a

third round is at most , and so on. In the worst case (the fraction of liars is usually much smaller than ), the expected number of rounds

needed to detect that a composite number is composite is . (  is a geometric series,

which converges to  if  because  as all but the first term cancel out.) We get the same result when we

interpret this as the geometric distribution, whose expected value is , with a success probability of . Ignoring the optimizations

mentioned above, we have to multiply the expected number of attempts to find a probable prime by  to get an estimate for the total number

of Miller-Rabin primality test rounds before the last attempt, which returns the probable prime after an additional  rounds. This estimate is

not really affected by the parameter . For example, when we search for a 2’048-bit prime, we expect to perform in the order of 

 rounds of the Miller-Rabin primality test before the last attempt. Whether you perform an additional 2 or 64 rounds for the last attempt

is only a matter of a few percentages. The above optimizations make the impact of the last attempt on the overall performance significantly

bigger, but we’re still talking about percentages and not multiples when we change the parameter .

Search for a group generator
Given a cyclic group  and the prime factorization of its order ,  generates the whole group if and only if

for  from  to . (According to Lagrange’s theorem, the order of  has to divide the group order , and the above condition ensures that the order

of  is not one factor smaller than .) A simple way to find a generator is to repeatedly choose a random element from  until this is the case.

Since a cyclic group of order  has  generators, the probability that a randomly chosen element generates the group is . The number of

trials needed to find a generator follows the geometric distribution. This means that we find a generator after  trials on average. Since 

 for all  (see the fact 2.102 in the Handbook of Applied Cryptography), . We will study a smarter

version of this algorithm in a box below.

2 4
t

P (D  ∣t C) ≤ (  )4
1 t D  t

t C P (D  ∣t C)
P (D  ∣t C) =  

P (C)
P (D   ∩ C)t

t P (C ∣ D  )t

P (C ∣ D  ) =t P (C) ⋅  ≤
P (D  )t

P (D  ∣ C)t
 ≤

P (D  )t

P (D  ∣ C)t
 (  ) ,
r

1
4
1 t

r

P (D  ) ≥t r r P (C ∣ D  )t (  )4
1 t 1

 4
1

(  )2
1 80

t

p q = 2p + 1 p q

p

(  )4
1 t

2−128

 4
1

 4
1

 16
1

 4
1

1 +  +4
1

 +16
1 … = 3

4 s =  r =∑i=0
∞ i 1 + r + r +2 …

 1−r
1 ∣r∣ < 1 s − rs = s(1 − r) = 1

 

P
1 P =  4

3

 3
4

t

t 710 ⋅  =3
4

947

t

G n = p  p  … p  1
e  1

2
e  2

l
e  l G ∈ G

G = p  i

n

 I

i 1 l G n

G n G
n φ(n)  

n
φ(n)

 

φ(n)
n

φ(n) >  6 log  (log  (n))e e

n n ≥ 5  <
φ(n)
n 6 log  (log  (n))e e

Multiplicative Additive Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Event_(probability_theory)
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://cacr.uwaterloo.ca/hac/about/chap4.pdf
http://www.math.dartmouth.edu/~carlp/PDF/paper88.pdf
https://eprint.iacr.org/2018/749.pdf
https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test
https://en.wikipedia.org/wiki/Carl_Pomerance
https://en.wikipedia.org/wiki/John_Selfridge
https://en.wikipedia.org/wiki/Samuel_S._Wagstaff_Jr.
https://en.wikipedia.org/wiki/Lucas_pseudoprime#Implementing_a_Lucas_probable_prime_test
https://en.wikipedia.org/wiki/%C3%89douard_Lucas
https://stackoverflow.com/a/6330138/12917821
https://en.wikipedia.org/wiki/Geometric_series
https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Bernoulli_trial
https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Expected_value
https://cacr.uwaterloo.ca/hac/about/chap2.pdf


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2745 / 92

This algorithm can be used only if the prime factorization of the group’s order is known. As mentioned earlier, integer factorization is a hard

problem. We can avoid this problem for multiplicative groups modulo a prime number  by choosing the factors of  first and then deriving 

from them, as we did when searching for a safe prime. In the case of a safe prime ,  and 

. (If  and thus , .) If we ignore the elements  and , as the order of  is 

 and the order of  modulo  is , then half of all the  remaining elements in the group are generators. This means that

when we choose an element between  and  at random (excluding both ends), we have a 50% chance that this element generates the whole

group. As a consequence, we need only two attempts on average to find a generator of the group , where  is a safe prime. Since  is the

only element of order  in a cyclic group,  is a generator if . You can enable the generation of a generator according to this logic

in the tool of the previous section. You can also convince yourself that half of all the elements between  and  are generators for all the safe

primes greater than 5 and smaller than 100 (namely 7, 11, 23, 47, 59, and 83) using the repetition table of multiplicative groups.

For the sake of simplicity, I use only the multiplicative notation in the text parts of the following information boxes.

Generator of a subgroup

Given a generator  of a group  of order , the element  generates the unique subgroup  of order , where  is a divisor of .

(The order of  has to be  because the order of  wouldn’t be  otherwise.) If the order of the desired subgroup  is prime, you don’t need

to find a generator of the supergroup  first. To find a generator of the subgroup with the prime order , you can repeatedly choose a random

element  until . Once you have found an element  for which this is the case, the element  generates the subgroup of

order . Proof: Clearly,  because  for all  due to Lagrange’s theorem. Since  and , it follows

from an earlier theorem with  that the order of  is .

Determining the order of an element

Given a finite group  and the prime factorization of its order , we want to determine the order  of an element . Due to

Lagrange’s theorem,  divides . Therefore, the multiset of the prime factors of  includes the multiset of the prime factors of , which means

that , where  for  from  to . Since  is the order of ,  and  for any integer . This

allows us to determine  by lowering each of the  to the lowest value  for which  repeated  times still equals the identity

element. The important insight is that we can tweak each of the exponents independently from the others. As long as  for each of the

exponents,  is still a multiple of . As soon as one ,  is no longer a multiple of , and thus . This gives us the following

algorithm for determining the order of :

The algorithm does not require the group to be cyclic, but it requires that the prime factorization of the group’s order is known. The following

tool implements the above algorithm for arbitrarily large numbers as long as it can determine and then factorize the order of the group with

Pollard’s rho factorization algorithm. You can ignore the tab titled elliptic curve for now.

q q − 1 q

q = 2p + 1 > 5 ∣ ∣ = 2p φ(∣Z  ∣) =q
× φ(2p) = φ(2) ⋅

φ(p) = p − 1 q = 5 p = 2 φ(4) = φ(2 ) =2 2 (2 −1 1) = 2 = 2 − 1 = 1 1 q − 1 1
1 q − 1 q 2 2p − 2 = 2(p − 1)

1 q − 1
Z  q

× q q − 1
2 G < q − 1 G =  

p q 1
1 q − 1

G G n H = G  

d
n H d d n

H d G n H
G p

R ∈ G R = 

p
n

 I R R  

p
n

p (R ) = 

p
n

p I A =n I A ∈ G (R ) = 

p
n

p I (R ) = 

p
n 1  I

e = 1 R  p
n

p

G n = p  p  … p  1
e  1

2
e  2

l
e  l d A

d n n d

d = p  p  … p  1
s  1

2
s  2

l
s  l s  ≤i e  i i 1 l d A A =d I A =c⋅d (A ) =d c I =c I c

d e  i s  i
′ A d =′

 p  ∏i=1
l

i

s  i
′

s  ≥i
′ s  i

d′ d s  <i
′ s  i d

′ d A =d′
 I

A

let d := n

for (i from 1 to l) {

d := d/p  i
e  i

let B := Ad

while (B = I) {

B := Bp  i

d := d ⋅ p  i

}
}
return d

Modulus m: 97 Next prime Previous prime Element A: 56 Random

Group order n = 96 = 2  · 3

p d B =  A

2 3 = 3 46

6 = 2 · 3 79

12 = 2  · 3 33

24 = 2  · 3 22

   

5

i
ei m

d

5

2

3

Z  q
×

Multiplicative Additive Both

Multiplicative group Elliptic curve Both

https://ef1p.com/number-theory/
http://localhost:4000/#information-boxes
https://en.wikipedia.org/wiki/Algorithm


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2746 / 92

A faster algorithm for finding a generator

Given a cyclic, commutative group  and the prime factorization of its order , we get a generator  by doing

Before we can understand why this algorithm works, we must note that the above construction implies that

It follows from an earlier theorem that the order of  is . According to another theorem, the order of  is  because 

for all . This means that if the algorithm terminates,  is indeed a generator of the group .

This algorithm is quite fast because we need on average at most two attempts to find a suitable  for each . This is because:

1. The image  of the power function  is a subgroup of : Since every element in  is of the form  for some 

and the group operation is commutative,  because . Thus,  is closed. Since every element

in  is mapped to some element in ,  is not empty. Therefore,  is indeed a subgroup of .

2. The order of  is : Given a generator  of the group ,  has order  because . Since the group

generated by  is included in  due to closure,  contains at least  elements. Since  is cyclic, the subgroup  is cyclic as well. So

let  be a generator of  and  be any of its preimages. Since the order of  can be at most  due to Lagrange’s theorem,

the order of  can be at most . Therefore,  contains exactly  elements.

3. The preimage  of the identity element  is a subgroup of :  because . For any  (i.e. 

and ),  because  due to commutativity. Since  is non-empty and closed,  is a

subgroup of . (As we will revisit later,  is the so-called kernel of .)

4.  maps two inputs  and  to the same output if and only if they belong to the same coset of : 

.

5.  is distributed uniformly over  as  is chosen at random from  and all cosets contain the same number of elements.

6.  because of the previous point and . Therefore, the probability of success when choosing  is 

. Since the number of attempts needed to find a suitable  for each  follows the geometric distribution,

the expected number of attempts is .

You find a more elaborate analysis of the running time of this algorithm on page 328 of Victor Shoup’s book. The following tool implements

the above algorithm for cyclic groups. As we saw earlier, a multiplicative group is cyclic if and only if , which is the case if and

only if the modulus , , , or  for an odd prime  and a positive integer . In the case of elliptic curves, the situation is more

complicated, and the tool simply aborts after 128 failed attempts to find a suitable .

p d B =  A

48 = 2  · 3 96

96 = 2  · 3 1

3 32 = 2 35

96 = 2  · 3 1

Element order d = 96

i
ei

m
d

4

5

1 5

5

G n = p  p  … p  1
e  1

2
e  2

l
e  l G

for (i from 1 to l) {

choose A ∈ G at random until A = 

p  i

n

 I

let G  :=i A
 

p  i
e  i
n

}

return G :=  G  

i=1

∏
l

i

G  =i

p  i

e  i

(A ) =
 

p  i
e  i
n

p  i

e  i

A =n I and G  =i

p  i

e  −1i

(A ) =
 

p  i
e  i
n

p  i

e  −1i

A = p  i

n

 I

G  i p  i
e  i G n (∣G  ∣, ∣G  ∣) =i j 1

i = j G G

A p  i

H = f  (G)n/p  i
f  n/p  i

G H An/pi A ∈ G
A  ⋅1
n/p  i A  =2

n/p  i (A  ⋅1 A  ) ∈2
n/p  i H A  ⋅1 A  ∈2 G H

G H H H G

H p  i G G G ∈n/p  i H p  i (G ) =n/p  i p  i G =n I

Gn/p  i H H p  i G H
H H J ∈ f  ({H})

n/p  i

−1 J n

H = Jn/p  i p  i H p  i

K = f  ({I})
n/p  i

−1 I G I ∈ K I =n/p  i I A  ,A  ∈1 2 K A  =1
n/p  i I

A  =2
n/p  i I A  ⋅1 A  ∈2 K (A  ⋅1 A  ) =2

n/p  i A  ⋅1
n/p  i A  =2

n/p  i I K K
G K f  n/p  i

f  n/p  i A B K
A =n/p  i B ⟺n/p  i A /B =n/p  i n/p  i I ⟺ (A/B) =n/p  i I ⟺ A/B ∈ K ⟺ A ∈ K ⋅ B

An/p  i H A G

P (A =n/p  i I) =  ≤
p  i

1
 2

1 ∣H∣ = p  i A

P (A =n/p  i  I) = 1 −  ≥p  i

1
 2

1 A p  i

 ≤1−1/p  i

1 2

(m) = (m)
m = 2 4 pe 2pe p e

A

Modulus m: 97 Next prime Previous prime Search    

Multiplicative Additive Both

Multiplicative Additive Both

gcd

λ φ

Multiplicative group Elliptic curve Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Image_(mathematics)#Inverse_image
https://en.wikipedia.org/wiki/Kernel_(algebra)
https://en.wikipedia.org/wiki/Discrete_uniform_distribution
https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Time_complexity
https://shoup.net/ntb/ntb-v2.pdf
https://math.stackexchange.com/a/2324138/947937


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2747 / 92

Commutative rings
In this article, this and the next chapter build towards elliptic curves, which constitute the second popular way to construct linear one-way

functions. However, the concepts presented in the following two chapters are also important in their own right. We will encounter repetition

rings when we will discuss cryptosystems and finite fields when we will study coding theory.

Ring axioms
A ring is an algebraic structure which consists of a set  and two binary operations, called addition (+) and multiplication (·), which satisfy the

following axioms (written in a compact notation using universal and existential quantifiers):

Addition forms a commutative group:

Closure: 

Associativity: 

Identity: 

Invertibility: 

Commutativity: 

Multiplication forms a so-called monoid (a group without invertibility):

Closure: 

Associativity: 

Identity: 

Multiplication distributes over addition:

Distributivity: 

As the title of this chapter suggests, we’re interested only in commutative rings, whose multiplication operation is commutative:

Commutativity: 

Remarks on the notation

Lowercase: I use lowercase letters to denote the elements of a ring instead of uppercase letters as I did in the case of groups. This makes it

easier to tell groups and rings apart: As we will see in a moment, the inputs of our linear one-way functions form a ring, whereas the

outputs belong to a group. The inputs of the linear one-way functions scale the outputs, and it’s common to write coefficients in

lowercase.

Identities: Since the only rings we are interested in for now consist of integers, it’s convenient to use the integers 0 and 1 to denote the

additive and the multiplicative identity.

Precedence: By convention, multiplication and division are evaluated before addition and subtraction, i.e.  is to be interpreted

as . (Exponentiation and root extraction have an even higher precedence.)

: This symbol is usually used to denote the set of real numbers. Since we talk only about integers throughout this article, I decided to use

this symbol despite this conflict in meaning.

Universal and existential quantifiers

97 is prime

Group order n = 96 = 2  · 3

p Random A B =  A G  =  A

2 44 1

76 96 51

3 93 61 61

Generator G =  7 ↗

5

i
ei

m
n / pi

i m
n / pi

ei

5

1

m

R

∀ a, b ∈ R a + b ∈ R

∀ a, b, c ∈ R (a + b) + c = a + (b + c)

∃ 0 ∈ R ∀ a ∈ R a + 0 = a

∀ a ∈ R ∃ −a ∈ R a + (−a) = 0

∀ a, b ∈ R a + b = b + a

∀ a, b ∈ R a ⋅ b ∈ R

∀ a, b, c ∈ R (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)

∃ 1 ∈ R ∀ a ∈ R a ⋅ 1 = a = 1 ⋅ a

∀ a, b, c ∈ R a ⋅ (b + c) = a ⋅ b + a ⋅ c

∀ a, b ∈ R a ⋅ b = b ⋅ a

a ⋅ b + a ⋅ c
(a ⋅ b) + (a ⋅ c)

R

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Ring_(mathematics)#Definition
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Identity_element
https://en.wikipedia.org/wiki/Inverse_element
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Monoid
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Identity_element
https://en.wikipedia.org/wiki/Distributive_property
https://en.wikipedia.org/wiki/Commutative_ring
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Root_extraction
https://en.wikipedia.org/wiki/Order_of_operations
https://en.wikipedia.org/wiki/Real_number


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2748 / 92

When making a statement about the elements of a set, it is important to indicate whether the statment is true for all elements of the set or

just for some elements of the set. In predicate logic, one uses the universal quantifier  (“for all”) for the former and the existential quantifier 

 (“it exists”) for the latter. The most important rule of inference is universal instantiation: If a statement is true for all elements of a set, it is

true for any particular element of the set. The order of quantifiers matters: The identity axiom says that there is at least one element which is

an identity for all elements of the set, whereas the invertibility axiom says that for all elements of the set at least one element exists which is

an inverse for that particular element.

Multiplicative identity crisis

I stated the group axioms for addition in the ring axioms above in a reduced form. Ignoring for now that the definition of invertibility is

ambiguous, it still follows from these reduced group axioms that the right identity is unique and that the right identity is also a left identity

(see the last chapter). As far as I can tell, we have to require that the right identity is also a left identity in the case of a monoid in order to

ensure that the identity of the monoid is unique. (If there were two distinct identities  and , then , which is a

contradiction.) Alternatively, we could require that both a left identity and a right identity exist in a monoid. (If there were two distinct left

identities  and  and a right identity , then  and , which contradicts that .)

Integers modulo m
As we saw earlier, the integers modulo an integer  form an additive group. Such a group is also closed under multiplication. Multiplication is still

associative when the result is reduced to its remainder, and the integer  is the multiplicative identity. Since multiplication means repeated

addition and addition is associative and commutative, multiplication distributes over addition:

Therefore, the integers modulo , which we write as  or  (see above and below), form a (commutative) ring. You can use the following

tool to perform modular addition and multiplication with arbitrarily large numbers, which is handy in cryptography:

a =  4

b =  7

a + b =  4 + 7 =  11

−b =  −7 =  8

a − b =  4 − 7 =  12

a · b =  4 · 7 =  13

b =  7  =  13

a / b =  4 / 7 =  7

a =  4  =  4

Subrings

A ring  is a subring of another ring  if  is a subset of  and the ring axioms hold for addition and multiplication restricted to . Since the

modulus  is part of these operations (it defines what it means to be equivalent), the integers modulo  have no subrings other than the

whole ring because the multiplicative identity  generates the whole additive group.

Zero ring

The above axioms don’t require that . If the additive identity equals the multiplicative identity, all elements in the ring are equal to

these identities:

∀
∃

E  1 E  2 E  =1 E  ∘1 E  =2 E  2

E  1 E  2 E E  =1 E  ∘1 E = E E  =2 E  ∘2 E = E E  =1  E  2

m

1

a ⋅ (b + c) =  m  =  

a times

 (b + c) + … + (b + c) m  +
a times

 b + … + b
 =  

a times

 c + … + c m a ⋅ b + a ⋅ c

m Z/mZ Z  m

Modulus m: 15 Next prime Previous prime

Element a: 4

Element b: 7

Exponent e: 15

   

m

m

m 15

m 15

m 15

m 15

−1
m

−1
15

m 15

e
m

15
15

S R S R S
m m

1

0 = 1

    

∀ a ∈ R a = a ⋅ 1

= a ⋅ 0

= 0

since 1 is the multiplicative identity

since 1 = 0

see the next section

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Universal_quantification
https://en.wikipedia.org/wiki/Existential_quantification
https://en.wikipedia.org/wiki/Rule_of_inference
https://en.wikipedia.org/wiki/Universal_instantiation
https://en.wikipedia.org/wiki/Proof_by_contradiction
https://en.wikipedia.org/wiki/Identity_element#Definitions
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Subring
https://en.wikipedia.org/wiki/Subset


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2749 / 92

A ring which contains only a single element is a so-called zero ring. Since all zero rings are isomorphic to one another, we speak of the zero

ring, denoted as . The zero ring is not a subring of any non-zero ring because the additive identity is different from the multiplicative

identity in non-zero rings, and a subring must have the same identities as its superring in order to satisfy the axioms for the same operations.

We’re not interested in such technicalities, and we will exclude the case where  explicitly when defining fields, as it is commonly done.

Derived properties
Since addition forms a group and multiplication forms a monoid, the additive identity and the multiplicative identity of a ring are unique. It also

follows that the additive inverse is unique. Other consequences of the ring axioms are:

Multiplication by zero

Multiplication by minus one

Units and zero divisors
An element of a ring may or may not have a multiplicative inverse. An element which has a multiplicative inverse is a so-called unit. An element  is

called a zero divisor if there exists a non-zero element  so that . (Since we care only about commutative rings, we don’t distinguish

between left and right zero divisors.) Every element of a finite ring is either a unit or a zero divisor, which can be seen as follows. Consider the

function , which multiplies the input by some element . Since the multiplication of ring elements is closed, this function maps each

element of  to another element of , which is usually written as . (In mathematical terms,  is both the domain and the codomain of

the function.) Depending on ,  is either so-called injective or not:

Injective:  maps distinct inputs to distinct outputs, which means that  implies that . By contraposition, this also

means that  implies that . Since the codomain of the function (the set of potential outputs) is just as large as its

domain (the set of inputs), there has to be an element  for each  so that . (A function whose image covers its codomain is said

to be surjective. A function which is both injective and surjective is said to be bijective.) As a consequence,  is a permutation. (We’ve already

encountered permutations in the context of groups.) It follows that there is an element  for which  and that there is

no element  other than zero for which . (As we saw above, .) This means that if  is injective for some

element , then  is a unit and not a zero divisor.

Non-injective: If  is not injective, there are distinct elements  and  for which . Since  and ,  is a

zero divisor because  due to distributivity. (As we saw earlier,  also implies that 

 for any element  because , which means that the outputs repeat

after a collision.) Since at least two inputs map to the same output, there has to be at least one element  for which there exists no element

 so that . If  had a multiplicative inverse , the element  (which exists due to closure) would constitute such an

input as  due to associativity. Therefore, zero divisors can’t have a multiplicative inverse

because the existence of a multiplicative inverse makes the mapping injective, whereas a zero divisor makes the mapping non-injective as 

 for  and another element.

The existence of zero divisors is “undesirable” because it destroys the cancellation property:  implies that  only if  is not a zero

divisor. If  is a zero divisor, then  equals  only up to a multiple of the smallest element  for which . You can observe these facts in the

operation table of multiplicative groups when you choose a non-prime modulus, such as 15.

Integral domains

The statement that each element is either a unit or a zero divisor doesn’t hold for rings with an infinite number of elements. For example, the

integers  form a ring under ordinary addition and multiplication. The only elements which have a multiplicative inverse in  are  and ,

yet no integer other than  divides . A non-zero commutative ring where the product of any two non-zero elements is non-zero (i.e.  is the

{0}

0 = 1

 ∀ a ∈ R a ⋅ 0 = 0

a ⋅ 0 = a ⋅ (0 + 0) = a ⋅ 0 + a ⋅ 0
Add −(a ⋅ 0) on both sides to get 0 = a ⋅ 0.

 ∀ a ∈ R a ⋅ (−1) = −a

    

a ⋅ 0

a ⋅ (1 + (−1))

a ⋅ 1 + a ⋅ (−1)

a + a ⋅ (−1)

a ⋅ (−1)

= 0

= 0

= 0

= 0

= −a

as just proven

since 0 = 1 + (−1)

due to distributivity

since a ⋅ 1 = a

add −a on both sides

a

x a ⋅ x = 0

f  (x) =a a ⋅ x a

R R f  : R →a R R
a f  a

f  a x  =1  x  2 f  (x  ) =a 1  f  (x  )a 2

f  (x  ) =a 1 f  (x  )a 2 x  =1 x  2

x y ∈ R f  (x) =a y

f  a

a−1 f  (a ) =a
−1 a ⋅ a =−1 1

z f  (z) =a a ⋅ z = 0 f  (0) =a a ⋅ 0 = 0 f  a

a a

f  a x  1 x  2 f  (x  ) =a 1 f  (x  )a 2 a ⋅ x  =1 a ⋅ x  2 x  =1  x  2 a

a ⋅ x  −1 a ⋅ x  =2 a ⋅ (x  −1 x  ) =2 0 f  (x  ) =a 1 f  (x  )a 2 f  (x  +a 1

b) = f  (x  +a 2 b) b a ⋅ (x  +1 b) = a ⋅ x  +1 a ⋅ b = a ⋅ x  +2 a ⋅ b = a ⋅ (x  +2 b)
y ∈ R

x f  (x) =a a ⋅ x = y a a−1 a ⋅−1 y

f  (a ⋅a
−1 y) = a ⋅ (a ⋅−1 y) = (a ⋅ a ) ⋅−1 y = y

f  (x) =a 0 0

a ⋅ b = a ⋅ c b = c a

a b c z a ⋅ z = 0

Z Z +1 −1
0 0 0

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Zero_ring
https://en.wikipedia.org/wiki/Unit_(ring_theory)
https://en.wikipedia.org/wiki/Zero_divisor
https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Codomain
https://en.wikipedia.org/wiki/Injective_function
https://en.wikipedia.org/wiki/Contraposition
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Surjective_function
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Permutation
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Cancellation_property
https://en.wikipedia.org/wiki/Integer


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2750 / 92

only zero divisor), is called an integral domain. Since every element of a finite ring is either a unit or a zero divisor, every finite integral domain

is a field. Since we’re interested only in finite algebraic structures, we don’t care about integral domains. I still want to note that the

cancellation property holds also for infinite rings: If  is not a zero divisor, then  implies that  because  implies

that  and  has to equal  given that  is not a zero divisor, which is the case only if .

Uniqueness of the multiplicative inverse in rings

If an element of a ring has a multiplicative inverse, the multiplicative inverse is unique. For finite rings, this fact follows directly from the

argument above. (If  is a unit,  is a permutation, and thus there is only a single element for which .) It’s not difficult to show that

this fact holds for infinite rings as well: After proving that a right inverse is also a left inverse (or simply requiring that the ring is

commutative), any two inverses  and  of  are the same because .

Multiplicative group of units

Given a ring , the set of all units in  is usually denoted as  (or as ).  forms a group under the ring’s multiplication:

Identity: The multiplicative identity  is a unit and thus included in  because it has a multiplicative inverse, namely itself.

Invertibility: By definition, every unit has a multiplicative inverse. Since a right inverse is also a left inverse and vice versa, every inverse is

itself invertible (i.e. if  is the inverse of , then  is the inverse of ).

Closure: The product of two units is another unit because for any ,  as 

. (  and  exist because  and  are units.)

Associativity: Since multiplication is the same operation as in the ring, it is still associative.

The notation for the group of units shouldn’t surprise you. I’ve been using it since I introduced multiplicative groups:   .

Repetition ring
There are two reasons why we study rings. For one thing, fields, which we’ll discuss in the next chapter in order to construct elliptic curves, are

simply rings in which all non-zero elements are units. For another thing, we learned that you reach the identity element when you repeat an

element  of a finite group often enough. From there on, you will get the same elements in the same order. This means that we can reduce the

number of repetitions modulo the element’s order  without affecting the result:

When constructing a linear one-way function to be used in cryptosystems, we typically repeat a generator . Since the function is linear, we can

add and multiply two inputs  and  in the output space while knowing only the input  and the output :

Since we compute the addition and the multiplication of inputs modulo the generator’s order , the inputs of our linear one-way function form a

finite ring. I call it the repetition ring of the element which is repeated, even though I haven’t found anyone else who uses this term. If the linear

one-way function is constructed with a multiplicative group modulo , it’s very easy to confuse the group operation, which is multiplication

modulo , with multiplication in the repetition ring, which is computed modulo . In order to minimize confusion, I use uppercase

letters for the elements of the group and lowercase letters for the elements of the ring. As mentioned earlier, this is also why I keep the modulus

next to the equals sign. For example, such a linear one-way function transforms the equivalence relation  into 

, i.e. the latter relation holds if and only if the former does. Since the repetition ring is a ring, an element  may or may not have a multiplicative

inverse. For example,  has a solution  if and only if  has a multiplicative inverse modulo , in which case .

Advanced concepts
While Wikipedia lists the following topics as basic concepts, they are fairly advanced for our standards. I put all of them in optional information

boxes because we don’t need any of them. They just provide an outlook into the bigger mathematical context, and having an elementary

understanding of them makes it easier to read the sources that I’ve referenced throughout this article, including Wikipedia. They also explain the

notation . I advise you to skip these boxes if you’re not interested in any of this.

a a ⋅ b = a ⋅ c b = c a ⋅ b = a ⋅ c
a ⋅ b − a ⋅ c = a ⋅ (b − c) = 0 b − c 0 a b = c

a f  a f  (x) =a 1

a  1
−1 a  2

−1 a a  =1
−1 a  ⋅1

−1 1 = a  ⋅1
−1 (a ⋅ a  ) =2

−1 (a  ⋅1
−1 a) ⋅ a  =2

−1 1 ⋅ a  =2
−1 a  2

−1

R R R× R∗ R×

1 R×

b a a b

a, b ∈ R× (a ⋅ b) =−1 b ⋅−1 a−1 (a ⋅ b) ⋅ (b ⋅−1 a ) =−1 (a ⋅ (b ⋅
b )) ⋅−1 a =−1 a ⋅ a =−1 1 a−1 b−1 a b

Z  m →Z  m
×

A

∣A∣

A =n A    A =n   ∣A∣ ∣A∣ I

G

a b b A = f(a)

Addition: 

Multiplication: 

f(a + b) = G =a+b G ⋅a G =b A ⋅ Gb

f(a ⋅ b) = G =a⋅b (G ) =a b Ab

∣G∣

m

m ∣ ∣ =

a ⋅ b + c =  φ(m) d (G ) ⋅a b G =  

c
m

Gd a

(G ) =  

a x
m G x a φ(m) x =  φ(m) a

−1

Z/mZ

Multiplicative Additive Both

% since

Multiplicative Additive Both

Z  m
× φ(m)

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Integral_domain
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Ring_(mathematics)#Basic_concepts
http://localhost:4000/#optional-reading


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2751 / 92

Homomorphisms

A homomorphism is a function which maps the elements of one algebraic structure to the elements of a similar algebraic structure while

preserving the relations between the elements in each structure under the operations of the corresponding structure. Unlike an

isomorphism, which has to be invertible (see the group isomorphisms above), a homomorphism can map several elements of its domain to a

single element of its codomain and doesn’t have to reach all the elements of its codomain. In other words, a homomorphism has to be neither

injective) nor surjective, while an isomorphism has to be both in order to be bijective. (Every isomorphism is a homomorphism, but a

homomorphism is an isomorphism if and only if it is bijective.)

Given two rings  and , a ring homomorphism is a function  which satisfies the following properties:

1. Preservation of addition: For all , .

2. Preservation of multiplication: For all , .

3. Preservation of the multiplicative identity: .

The index indicates to which ring an operation or an identity element belongs. The third property prevents that all elements are mapped to 

. It follows from these properties that the additive identity and additive and multiplicative inverses are preserved.

Kernel

The kernel of a homomorphism  is the preimage of the additive identity element (or just the identity element in the case of

groups):  (see these boxes if you don’t understand these notations). (The kernel is usually written

as  or  instead of , but I decided to make use of my artistic license again.)

The kernel  of a homomorphism  has some interesting properties:

1. The kernel is a group under addition:

Closure: For all ,  because .

Associativity: Inherited from the associativity of addition in .

Identity:  because you can cancel  from .

Invertibility: For all ,  because .

2. A homomorphism maps two inputs  and  to the same output if and only if they belong to the same coset of its kernel: 

. Obviously,  because 

. (You may have noticed that we’ve already used this fact earlier.)

3.  is injective if and only if . One direction of this equivalence is trivial to prove: If  is injective, no two inputs are mapped to

the same output, including . If  is not injective, there are at least two distinct elements  so that . Therefore, 

 as shown in the previous point. Since , , which proves the contraposition of the other direction.

Ideals

An ideal  is a subset of the elements of a ring  so that they form a group under addition and that they absorb all the elements of  under

multiplication, which means that for every  and every , . (If the ring is not commutative, one has to distinguish between left

ideals and right ideals, whose intersection consists of the two-sided ideals.) Ideals are usually not subrings, as they typically lack the

multiplicative identity. For example, given the ring of integers , the set of all the multiples of an integer , which is commonly written as 

, is an ideal. This set is closed under addition (the sum of two multiples of  is another multiple of ), addition remains

associative (the order in which you add multiples of  doesn’t matter), it has an identity element (  is a multiple of  because ), and

every element has an additive inverse ( ). Additionally, if you multiply any multiple of  by any integer,

you get another multiple of .

The kernel  of a homomorphism  is an ideal because the kernel forms a group under addition (see the first property in the previous box)

and the kernel absorbs all the elements under multiplication since for all  and all ,  as 

.

Principal ideals

A principal ideal is an ideal in a ring  which is generated by multiplying a single element  of  by every element of . Such a principal ideal

is often written as . If the ring is not commutative,  can be different from . If they are the same, the ideal

generated by  is also written as  or simply as . As we saw earlier when we discussed Bézout’s identity, every linear combination of any

R  1 R  2 f : R  →1 R  2

a, b ∈ R  1 f(a +  1 b) = f(a) +  2 f(b)

a, b ∈ R  1 f(a ⋅  1 b) = f(a) ⋅  2 f(b)

f(1  ) =1 12

0  2

f : R  →1 R  2

K  =f {x ∈ R  ∣1 f(x) = 0  } =2 f ({0  })−1
2

ker(f) ker f K  f

K  f f : R  →1 R  2

a, b ∈ K  f a +  1 b ∈ K  f f(a +  1 b) = f(a) +  2 f(b) = 0  +  2 2 0  =2 0  2

R  1

0  ∈1 K  ⟺f f(0  ) =1 0  2 f(0  )1 f(0  ) =1 f(0  +  1 1 0  ) =1 f(0  ) +  1 2 f(0  )1

a ∈ K  f −a ∈ K  f 0  =2 f(0 ) =1 f(a +  1 (−a)) = f(a) +  2 f(−a) = f(−a)

a b f(a) =
f(b) ⟺ f(a) −  2 f(b) = 0  ⟺2 f(a −  1 b) = 0  ⟺2 a −  1 b ∈ K  ⟺f a ∈ K  +  f 1 b b ∈ K  +  f 1 b 0  ∈1

K  f

f K  =f {0  }1 f

0  2 f a, b ∈ R  1 f(a) = f(b)
a −  1 b ∈ K  f a = b a −  1 b = 0  1

I R R
r ∈ R i ∈ I r ⋅ i ∈ I

Z n

nZ = {n ⋅ z ∣ z ∈ Z} n n

n 0 n n ⋅ 0 = 0
(n ⋅ z) + (n ⋅ (−z)) = n ⋅ (z − z) = 0 n

n

K  f f

r ∈ R  1 k ∈ K  f r ⋅  1 k ∈ K  f f(r ⋅  1 k) = f(r) ⋅  2 f(k) =
f(r) ⋅  2 0  =2 0  2

R a R R
aR = {a ⋅ r ∣ r ∈ R} aR Ra

a ⟨a⟩ (a)

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Homomorphism
https://en.wikipedia.org/wiki/Isomorphism
https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Codomain
https://en.wikipedia.org/wiki/Injective_function
https://en.wikipedia.org/wiki/Surjective_function
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Ring_homomorphism
https://en.wikipedia.org/wiki/Kernel_(algebra)
https://en.wikipedia.org/wiki/Image_(mathematics)#Inverse_image
https://en.wikipedia.org/wiki/Artistic_license
https://en.wikipedia.org/wiki/Injective_function
https://en.wikipedia.org/wiki/Contraposition
https://en.wikipedia.org/wiki/Ideal_(ring_theory)
https://en.wikipedia.org/wiki/Ideal_(ring_theory)#Definitions_and_motivation
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Principal_ideal
https://en.wikipedia.org/wiki/Linear_combination


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2752 / 92

two integers  and  is a multiple of . This means that any ideal in the ring of integers  can be generated by a single element, which

makes  a so-called principal ideal domain.

Quotient rings

Given a ring  and a (two-sided) ideal  in , we can define an equivalence relation  so that for any ,  if and only if .

For  to be an equivalence relation, it must satisfy the following properties for any elements , , and :

Reflexivity: . Since every ideal includes , .

Symmetry: If , then . Since the elements of an ideal form an additive group, an ideal contains the additive inverse of each of

its elements. Therefore, if , then .

Transitivity: If  and , then . Since  and ,  because every ideal is closed

under addition (i.e. if  and , then , which also means that ).

A set of equivalent elements is called an equivalence class. Transitivity implies that any two equivalence classes overlap each other

completely or not at all but not partially. Since the elements of both the ring and the ideal form a group under addition, the ideal is an additive

subgroup of the ring. Since  and  because , two elements are identical if and only if they belong to

the same additive cosets of the ideal. As shown earlier, cosets are either equal or disjoint.

Interestingly,  is also a congruence relation, which means that equivalent inputs result in equivalent outputs under addition and

multiplication: Given  where  and , then

 because  as we required that  and , and

 because  for some  and  for some , and thus 

. Now  because 

 since  absorbs multiplication and is closed under addition.

Therefore, addition and multiplication are well-defined for the cosets of : No matter which elements from two cosets you add or multiply, all

results belong to the same coset. As a consequence, the function  is a ring homomorphism, where  is the

additive identity because  (closure under addition) and  for any  (absorption of multiplication), and  is also the kernel

of  because for all  and only those s, :

1. Preservation of addition: For all , .

2. Preservation of multiplication: For all , ,

where  instead of the Cartesian product of sets.

3. Preservation of the multiplicative identity: , which is the multiplicative identity because 

 for any .

Since the ideal  “divides” (partitions) the ring , the ring of cosets is called the quotient ring of  modulo , written as . So not only does a

ring homomorphism define a kernel, which is an ideal, an ideal also defines a homomorphism, whose kernel is the ideal itself. A ring

homomorphism  maps all the elements of a coset of  to a single element because for all , 

 for some . We thus have an invertible mapping between the cosets of  and the image of , which means

that the quotient ring of  modulo  is isomorphic to the image  of :

This theorem has some interesting edge cases. If the ideal (and thus the kernel) is the ring itself, all elements are mapped to zero, and the

quotient ring is isomorphic to the zero ring: . (This is the case if the multiplicative identity belongs to the ideal.) On the other

hand, if the ideal contains only zero, the quotient ring is isomorphic to the ring itself: .

In the scope of this article, we’re interested only in integers modulo an integer , where we have . As noted above,  is the

ideal which consists of all multiples of . We can visualize what we learned in this box as follows for :

a b (a, b) Z
Z

R I R =  I a, b ∈ R a =  I b a − b ∈ I
=  I a b c ∈ R

a =  I a 0 a − a = 0 ∈ I

a =  I b b =  I a

a − b ∈ I b − a −(a − b) ∈ I

a =  I b b =  I c a =  I c a − b ∈ I b − c ∈ I (a − b) + (b − c) = a − c ∈ I
i ∈ I j ∈ I i + j ∈ I i =  I j

a − b ∈ I ⟺ a ∈ I+ b b ∈ I+ b 0 ∈ I

=  I
a  , a  , b  , b  ∈1 2 1 2 R a  =  1 I a  2 b  =  1 I b  2

a  +1 b  =  1 I a  +2 b  2 a  −1 a  =  2 I b  −2 b  1 a  −1 a  ∈2 I b  −2 b  ∈1 I

a  ⋅1 b  =  1 I a  ⋅2 b  2 a  =1 a  +2 i  a i  ∈a I b  =1 b  +2 i  b i  ∈b I a  ⋅1 b  =1 (a  +2 i  ) ⋅a (b  +2 i  ) =b

a  ⋅2 b  +2 a  ⋅2 i  +b i  ⋅a b  +2 i  ⋅a i  b a  ⋅2 b  +2 a  ⋅2 i  +b i  ⋅a b  +2 i  ⋅a i  =  b I a ⋅2 b  2 a  ⋅2 b  +2 a  ⋅2 i  +b i  ⋅a b  +2 i  ⋅a i  −b a  ⋅2

b  =2 a  ⋅2 i  +b i  ⋅a b  +2 i  ⋅a i  ∈b I I

I
f(x) = I+ x = {i + x ∣ i ∈ I} I

I+ I = I a ⋅ I = I a ∈ R I
f i ∈ I i f(i) = I+ i = I

a, b ∈ R f(a + b) = I+ (a + b) = I+ I+ (a + b) = (I+ a) + (I+ b) = f(a) + f(b)

a, b ∈ R f(a ⋅ b) = I+ (a ⋅ b) = I ⋅ I+ I ⋅ b + a ⋅ I+ a ⋅ b = (I+ a) ⋅ (I+ b) = f(a) ⋅ f(b)
A ⋅ B = {a ⋅ b ∣ a ∈ A, b ∈ B}

f(1) = I+ 1 (I+ a) ⋅ (I+ 1) = I ⋅ I+ I ⋅ 1 +
a ⋅ I+ a ⋅ 1 = I+ a a ∈ R

I R R I R/I

f K  f a ∈ K  +f b f(a) = f(k  +a b) = f(k  ) +a

f(b) = 0 + f(b) = f(b) k  ∈a K  f K  f f

R K  f f(R) f

R/K  f(R)f

R/R ≅ {0}
R/{0} ≅ R

m Z/mZ ≅ Z  m mZ
m m = 3

gcd

=

≅

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Principal_ideal_domain
https://en.wikipedia.org/wiki/Ideal_(ring_theory)#Definitions_and_motivation
https://en.wikipedia.org/wiki/Reflexive_relation
https://en.wikipedia.org/wiki/Symmetric_relation
https://en.wikipedia.org/wiki/Transitive_relation
https://en.wikipedia.org/wiki/Equivalence_class
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Cartesian_product
https://en.wikipedia.org/wiki/Quotient_ring
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Isomorphism_theorems#Theorem_A_(rings)
https://en.wikipedia.org/wiki/Edge_case


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2753 / 92

3ℤ = 𝕂f 0…

−3

0

3

3ℤ + 1 1…

−2

1

4

3ℤ + 2 2…

−1

2

5

ℤ / 3ℤ ℤ f(x) = x % 3 ℤ3 

The homomorphism  maps the elements of the infinite ring  (in blue) to the elements of the finite ring  (in green). All and

only the multiples of  are mapped to , which means that , which is an infinite ideal. The cosets of this ideal are the elements of

the quotient ring  (in purple). Since the elements of each coset are mapped to a distinct element of , we have .

Quotient groups

The ring-related concepts from the previous boxes have group-related equivalents:

Ring Group

Ring homomorphism Group homomorphism

Kernel as preimage of Kernel as preimage of 

Two-sided ideal Normal subgroup

Quotient ring Quotient group

An overview of ring- and group-related concepts.

Just like an additive subgroup of a ring has to satisfy an additional requirement to be an ideal, a subgroup  of a group  is a normal

subgroup if and only if the left coset  equals the right coset  for all . In commutative groups, every subgroup is normal.

There’s a great explanation on why we need this condition for non-commutative groups on Stack Exchange. See also this answer on Quora,

which introduces conjugacy classes. Both answers use the symmetric group  as an example.

Finite fields

Field axioms
A field is a commutative ring where all non-zero elements are units (i.e. have a multiplicative inverse) and . While the elements of a ring form

a commutative group only under addition, the non-zero elements of a field form a commutative group also under multiplication. Even though

most of it is repetition, we can state the field axioms for a set  and two binary operations, called addition (+) and multiplication (·), as follows

(written in a compact notation using universal and existential quantifiers):

The elements of the field form a commutative group under addition:

Closure: 

Associativity: 

Identity: 

Invertibility: 

Commutativity: 

The non-zero elements of the field form a commutative group under multiplication:

Closure: 

Associativity: 

f(x) = x   3 Z Z  3

3 0 K  =f 3Z
Z/3Z Z  3 Z/3Z ≅ Z  3

0 E

H G
G ∘H H ∘ G G ∈ G

S  3

0 = 1

F

∀ a, b ∈ F a + b ∈ F

∀ a, b, c ∈ F (a + b) + c = a + (b + c)

∃ 0 ∈ F ∀ a ∈ F a + 0 = a

∀ a ∈ F ∃ −a ∈ F a + (−a) = 0

∀ a, b ∈ F a + b = b + a

∀ a, b ∈ F a ⋅ b ∈ F

∀ a, b, c ∈ F (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)

%

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Ring_(algebra)
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Ring_homomorphism
https://en.wikipedia.org/wiki/Group_homomorphism
https://en.wikipedia.org/wiki/Kernel_(algebra)#Ring_homomorphisms
https://en.wikipedia.org/wiki/Kernel_(algebra)#Group_homomorphisms
https://en.wikipedia.org/wiki/Ideal_(ring_theory)
https://en.wikipedia.org/wiki/Normal_subgroup
https://en.wikipedia.org/wiki/Quotient_ring
https://en.wikipedia.org/wiki/Quotient_group
https://math.stackexchange.com/a/14315/947937
https://www.quora.com/What-are-some-examples-of-subgroups-of-non-abelian-groups-that-are-normal-and-others-that-are-not-normal/answer/Alon-Amit
https://en.wikipedia.org/wiki/Conjugacy_class
https://en.wikipedia.org/wiki/Symmetric_group
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Field_(mathematics)#Classic_definition
https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Identity_element
https://en.wikipedia.org/wiki/Inverse_element
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Associative_property


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2754 / 92

Identity: 

Invertibility: 

Commutativity: 

Multiplication distributes over addition:

Distributivity: 

The additive identity is different from the multiplicative identity:

Non-triviality: 

Infinite fields

Examples for infinite fields are the rational numbers , the real numbers , and the complex numbers .

Multiplicative group of a field

Given that I quantified the various multiplication axioms over different sets, it’s admittedly not obvious why the non-zero elements of a field

form a group under multiplication. Clearly, if associativity, identity, and commutativity hold for all the elements of a field, then they also hold

for a subset of them. Since every field is a ring, multiplication by  always results in . Therefore, the inverse of a non-zero element is another

non-zero element because you wouldn’t get  otherwise. As we saw above and will prove again below, invertibility implies that there are no

non-trivial zero divisors. Consequently, the product of two non-zero elements is another non-zero element, which means that the non-zero

elements are closed under multiplication.

Commutativity of addition

Strictly speaking, commutativity of addition is not required as an axiom because it follows from the other axioms.

Integers modulo p
The ring  is a field if and only if the modulus  is prime. As we saw earlier, an integer has a multiplicative inverse modulo  if and only if it is

coprime with . If  is prime, then all the positive integers smaller than  are relatively prime to . If  is composite, its factors are zero

divisors, which prevents  from being a field. Excluding non-coprime integers from the field as we did in the case of multiplicative groups no

longer works because repeatedly adding  to itself generates all the integers from  to . Put differently, filtering non-coprime integers

breaks the closure of addition. I added such a filtering option to the operation table of additive groups just so that you can convince yourself that

this is indeed the case.

Cyclicity of the additive group

In the case of integers modulo a prime number , the additive group is cyclic because the multiplicative identity  generates the whole group.

In the article about coding theory, we will extend these so-called prime fields and see that the additive group of a proper extension field is not

cyclic.

Cyclicity of the multiplicative group

The multiplicative group of any field is cyclic: As mentioned but not yet proven earlier, a polynomial of degree  over any field evaluates

to  for at most  distinct inputs. If we label the multiplicative group of a field  as , where , we have that  for all 

 due to Lagrange’s theorem. The exponent of  is the smallest positive integer  so that  for all . Since the

polynomial  can evaluate to  for at most  elements but  for all ,  cannot be smaller than . As proven

earlier, an element of order  exists. Therefore,  is cyclic.

Field notation
We are interested only in finite fields, i.e. fields which contain a finite number of elements. Finite fields are also called Galois fields (GF), named

after Évariste Galois (1811 − 1832), who died at the age of 20 in a duel. The number of elements in a finite field is called its order. Without

explaining why, the order of a finite field is always a prime power, and all the finite fields of the same order are isomorphic to one another. Given 

, where  is a prime number and  is a positive integer, the unique field of order  is denoted as  or . For integers modulo a prime

number, I will also use , where  indicates that the modulus is prime.

∃ 1 ∈ F ∀ a ∈ F a ⋅ 1 = a

∀ a ∈  ∃ a ∈−1 F a ⋅ a =−1 1

∀ a, b ∈ F a ⋅ b = b ⋅ a

∀ a, b, c ∈ F a ⋅ (b + c) = a ⋅ b + a ⋅ c

0 =  1

Q R C

0 0
1

Z  m m m

m m m m m

Z  m

1 0 m − 1

p 1

d > 0
0 d F F× F =× X =∣F ∣×

1
X ∈ F× F× n X =n 1 X ∈ F×

X −n 1 0 n X −n 1 = 0 X ∈ F× n ∣F ∣×

n = ∣F ∣× F×

q = pe p e q F  q GF (q)
Z  p p

F ∖ {0}

F ∖ {0}

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Identity_element
https://en.wikipedia.org/wiki/Inverse_element
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Distributive_property
https://en.wikipedia.org/wiki/Zero_ring#Properties
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://people.reed.edu/~mayer/math112.html/html1/node17.html#commfield
https://en.wikipedia.org/wiki/Finite_field#Properties
https://en.wikipedia.org/wiki/Field_extension
https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/%C3%89variste_Galois
https://en.wikipedia.org/wiki/Duel
https://en.wikipedia.org/wiki/Prime_power
https://en.wikipedia.org/wiki/Complement_(set_theory)
https://en.wikipedia.org/wiki/Complement_(set_theory)


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2755 / 92

Derived properties
Many properties, such as that the additive identity and the multiplicative identity are unique or that the additive inverse and the multiplicative

inverse of an element are unique, follow from the fact that addition and multiplication (in the latter case without ) form groups. Since every field

is a ring, the properties we proved for rings still apply. Other consequences of the field axioms are:

Multiplicative inverse of minus one

Multiplicative inverse of additive inverse

Stated in words, the multiplicative inverse of the additive inverse is the same as the additive inverse of the multiplicative inverse for every

element of every field. What we knew from the rational numbers with ordinary division ( ) thus holds in any field.

No non-trivial zero divisors

If , the above implication is true. If , then  has a multiplicative inverse, and thus

which makes  true in the other case as well. This is also known as the zero-product property.

Material implication 

The implication operator  is a binary truth function with the following truth table (using  for true and  for false):

The definition of .

The technical term for this operation is material implication in order to distinguish it from how we use the term “implication” in everyday

language. In logic, implication does not require causation. For example,  is a true statement.

Logical disjunction 

The logical disjunction  (“or”) is true if and only if one of the operands are true ( ) instead of false ( ):

0

 (−1) = −1−1

    

−(−1)

1

1 ⋅ (−1)−1

(−1)−1

= (−1) ⋅ (−1)

= (−1) ⋅ (−1)

= (−1) ⋅ (−1) ⋅ (−1)−1

= −1

as proven  , where a = −1

using the 

multiplying both sides by (−1)−1

simplifying both sides as usual

 ∀ a ∈ F (−a) = −(a )−1 −1

    

(−a)−1 = ((−1) ⋅ a)−1

= (−1) ⋅ a−1 −1

= (−1) ⋅ a−1

= −(a )−1

using 

using 

using 

using 

 =−a
1 −  

a
1

 ∀ a, b ∈ F a ⋅ b = 0 ⟹ a = 0 ∨ b = 0

a = 0 a = 0 a

    

a ⋅ b

a ⋅ a ⋅ b−1

b

= 0

= a ⋅ 0−1

= 0

starting with the premise of the above statement

multiplying both sides by a−1

simplifying both sides as usual,

a = 0 ∨ b = 0

⟹

⟹ ⊤ ⊥

P Q P ⟹ Q

⊥ ⊥ ⊤

⊥ ⊤ ⊤

⊤ ⊥ ⊥

⊤ ⊤ ⊤

⟹

7 is odd ⟹ 3 is prime

∨

∨ ⊤ ⊥

above

double inverse theorem

multiplication by minus one

inversion of combination

multiplicative inverse of minus one

multiplication by minus one

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Zero-product_property
https://en.wikipedia.org/wiki/Truth_function#Table_of_binary_truth_functions
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Tee_(symbol)
https://en.wikipedia.org/wiki/Up_tack
https://en.wikipedia.org/wiki/Material_conditional
https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Logical_disjunction


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2756 / 92

The definition of .

Solutions of squares

 stands for material equivalence (“if and only if”). The above theorem states that any two elements which result in the same element when

being squared differ at most in their sign (i.e. one is the additive inverse of the other if they are not equal). Therefore, the equation  has at

most two solutions for a given element . (If , there is only one solution, namely , and as we will see in the next section, there is no solution

for half of the non-zero elements.) A different way to see this is that in a field, the polynomial  of degree two can have at most two

solutions, as mentioned but not yet proved earlier.

Yet another proof

In the field of integers modulo a prime , the only square roots of  are  and  due to Euclid’s lemma as we saw earlier. Thus:

The following three sections are important to solve the equation of elliptic curves of the form  over a finite field.

Quadratic residues
An integer  is called a quadratic residue modulo  if there exists an integer  so that . If no such integer exists,  is called a quadratic

non-residue. Just like  is technically prime but excluded from the set of prime numbers to make theorems involving prime numbers easier,  is

technically a quadratic residue but excluded from the set of quadratic residues to make theorems about quadratic residues and non-residues

easier. Given this definition and an odd prime number , there are as many quadratic residues modulo  as quadratic non-residues modulo . As

we saw in the previous paragraph, the square of an integer equals the square of its additive inverse in any field, including the field . Therefore,

there are at most  quadratic residues modulo :

Since any two elements of the field which result in the same element when being squared differ at most in their sign, these  squares are all

different. Not accounting for , all the other  elements in  are quadratic non-residues.

Non-quadratic residue

It would make much more sense to use the term “non-quadratic residue” instead of “quadratic non-residue” for the integers which are not a

residue of a square number. Gauss is to blame for this. He’s the one who introduced the terms “quadratic residue” and “quadratic non-

residue” (respectively their Latin sources “residua quadratica” and “non-residua quadratica”) in his book Disquisitiones Arithmeticae in 1801.

These terms have been used since then, often even without “quadratic” if it’s clear from the context what “residue” and “non-residue” refer

to. Furthermore, “nonresidue” is frequently written without a hyphen.

Proof using group theory

P Q P ∨ Q

⊥ ⊥ ⊥

⊥ ⊤ ⊤

⊤ ⊥ ⊤

⊤ ⊤ ⊤

∨

∀ a, b ∈ F a = b ⟺ a = b ∨ a = −b2 2

    

a = b2 2 ⟺ a − b = 02 2

⟺ (a − b) ⋅ (a + b) = 0

⟺ a − b = 0 ∨ a + b = 0

⟺ a = b ∨ a = −b

subtracting b  from both sides2

using distributivity and commutativity

using 

taking b to the other side

⟺
x =2 c

c c = 0 0
f(x) = x −2 c

p 1 1 −1

a =  

2
p b ⟺2 a /b =  

2 2
p 1 ⟺ (a/b) =  

2
p 1 ⟺ a/b =  p ±1 ⟺ a =  p ±b

y =2 x +3 a ⋅ x + b

a m x a =  m x2 a

1 0

p p p

Zp
 2

p−1 p

  

12

22

(  )
2

p − 1 2

=  (p − 1)p
2

=  (p − 2)p
2

⋮

=  (  )p 2
p + 1 2

 2
p−1

0  2
p−1 Z  p

no non-trivial zero divisors

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Sign_(mathematics)
https://en.wikipedia.org/wiki/Quadratic_residue
https://en.wikipedia.org/wiki/Square_number
https://en.wikipedia.org/wiki/Gauss
https://en.wikipedia.org/wiki/Latin
https://la.wikisource.org/wiki/Disquisitiones_arithmeticae/Sectio_quarta
https://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae
https://en.wikipedia.org/wiki/Hyphen


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2757 / 92

Given the field  of integers modulo an odd prime , we denote its multiplicative group, which consists of all its elements except , as .

The squaring function  is a group homomorphism because . As a consequence, the

image of this function – the set of quadratic residues — is a subgroup of . The kernel  of this homomorphism is .  maps two

inputs  and  to the same output if and only if they belong to the same coset : 

. Since  and all cosets are of the same size, always two elements are mapped to the same output, which

means that half of all elements are quadratic residues. This is no surprise since we already proved earlier that every element of the function’s

image has exactly two preimages.

Products of residues and non-residues

The following table summarizes what you get when you multiply quadratic residues and non-residues modulo an odd prime :

Factor 1 · Factor 2 = Product

Residue   Residue   Residue

Residue   Non-residue   Non-residue

Non-residue   Residue   Non-residue

Non-residue   Non-residue   Residue

The possible products of residues and non-residues.

Given that multiplication of integers is commutative, there are three cases to analyze:

1. Residue · residue: The set of quadratic residues is closed under multiplication because for any residues  and , their product 

 is another quadratic residue. (We already saw in the previous box that the quadratic residues form a subgroup of . Since

,  is a residue. And the inverse of a residue is another residue: .)

2. Residue · non-residue: Since  is a multiplicative group, the function  is a permutation for any  (i.e. distinct inputs

are mapped to distinct outputs). Since we know that exactly half of all elements in  are residues and that the product of two residues is

another residue, the function  has to map all non-residues to non-residues for any residue . If just a single non-residue was

mapped to a residue, more than half of all outputs would be residues.

3. Non-residue · non-residue: Since the product of a residue and a non-residue is a non-residue, the function  has to map all

non-residues to residues for any non-residue . If just a single non-residue was mapped to a non-residue, more than half of all outputs

would be non-residues.

The second point can also be proven as follows: Let  be a residue and  be a non-residue. If  was a residue,  would be a

residue according to the first point, which is a contradiction. Therefore,  has to be a non-residue.

The second and the third case can also be derived using our advanced group concepts: Let  denote the subgroup of quadratic residues

modulo the odd prime , then the quadratic non-residues are a coset of . Let’s call this coset of non-residues , then  for any 

, and  for any . Now  can also be interpreted as a kernel, where the resulting quotient group  consists of the

elements  and , where  is the identity element and the order of the group is . Since the order of  cannot be greater than , we have 

. This means that  as groups of prime order are cyclic and cyclic groups are isomorphic to the additive group of the

same order.

For the above table to be correct,  has to be excluded from the set of quadratic residues. Otherwise, a residue times a non-residue can result

in a residue because  times any number is . |residues| = |non-residues| wouldn’t hold either otherwise.

Euler’s criterion
Given an odd prime , there’s a simple formula for determining whether an integer  is a quadratic residue modulo :

This is known as Euler’s criterion, named after Leonhard Euler (1707 − 1783). According to Fermat’s little theorem,  for all integers 

 which are coprime with . Since  is odd,  is even. Thus, the previous equation can be factored as follows:

Z  p p 0 Z  p
×

f(x) =  p x
2 f(a ⋅ b) =  p (a ⋅ b) =  

2
p a ⋅2 b =  

2
p f(a) ⋅ f(b)

Z  p
× K  f {1, −1} f

a b K  f a =  

2
p b ⟺2 a /b =  

2 2
p 1 ⟺ (a/b) =  

2
p 1 ⟺

a/b ∈ K  ⟺f a ∈ K  ⋅f b ∣K  ∣ =f 2

p

a2 b2 a ⋅2

b =  

2
p (a ⋅ b)2 Z  p

×

1 =  

2
p 1 1 (a ) =  

2 −1
p (a )−1 2

Z  p
× f(x) =  p a ⋅ x a ∈ Z  p

×

Z  p
×

f(x) =p b ⋅ x b

f(x) =  p c ⋅ x
c

b c b ⋅ c b ⋅−1 b ⋅ c =  p c

b ⋅ c

S  p

p S  p T  p S  ⋅p s = S  p

s ∈ S  p S  ⋅p t = T  p t ∈ T  p S  p Z  /S  p
×

p

S  p T  p S  p 2 T  p 2
T  ⋅p T  =p S  p Z  /S  p

×
p

0
0 0

p a p

a =  

 2
p−1

p    ⎩⎨
⎧1

−1

0

if a is a quadratic residue modulo p,
if a is a quadratic non-residue modulo p,

if a is a multiple of p.

a −p−1 1 =  p 0
a p p p − 1

(a − 2
p−1

1) ⋅ (a + 2
p−1

1) =  p 0

≅ Z  2
+

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Image_(mathematics)#Inverse_image
https://www.quora.com/Prove-the-product-of-two-quadratic-non-residues-is-a-quadratic-residue-mod-p-p-prime/answer/Yang-Yan-1
https://en.wikipedia.org/wiki/Proof_by_contradiction
https://www.quora.com/Prove-the-product-of-two-quadratic-non-residues-is-a-quadratic-residue-mod-p-p-prime/answer/Jack-Huizenga
https://en.wikipedia.org/wiki/Euler%27s_criterion
https://en.wikipedia.org/wiki/Leonhard_Euler


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2758 / 92

For every  except , either the first or the second factor has to be  because a field has no non-trivial zero divisors. If  is a quadratic

residue, there is an integer  so that . Since Fermat’s little theorem holds for  as well, we have:

Therefore, the first factor is  for the  quadratic residues modulo . Since  can be  for at most  elements of the field as

mentioned earlier, the  quadratic non-residues make the second factor .

More intuitive proof

Since  is an odd prime,  is cyclic and its order is even. In a cyclic group of even order, an element  is a quadratic residue if and only

if the exponent  is even, where  is a generator of the group. The reason for this is that a quadratic residue is of the form 

. Since the modulus  of the repetition ring is even, wrapping around cannot make an even exponent odd, i.e. 

 is still even. This can be visualized as follows:

Gp − 1  =p  G0  =p  1

G1 

G2 

G3 

…

G(p − 1) / 2  =p  −1

…

Gp − 4 

Gp − 3 

Gp − 2 

ℤ×  p 

The cyclic group  with quadratic residues in green and quadratic non-residues in red.

If you repeat any element  times, you get the . For the elements of the form , this is the case already after  repetitions. All

other elements need to be squared one more time to get there (i.e. to have an exponent which is a multiple of ). As explained earlier, the

element midway through the cycle is .

Legendre symbol

Adrien-Marie Legendre (1752 − 1833) introduced the following notation for Euler’s criterion, called the Legendre symbol:

Euler’s criterion of a product

Given two integers  and , Euler’s criterion of their product equals the product of their Euler’s criteria: . This makes

it much easier to analyze whether the products of residues and non-residues are residues or non-residues.

Square roots
In the previous two sections, we learned what a quadratic residue is and how we can determine whether an element is a quadratic residue using

Euler’s criterion. In this section, we want to compute a square root  of a quadratic residue  modulo an odd prime  so that . As shown

earlier, a square root of a field element is unique up to its sign. We use the radical symbol and the plus-minus sign to write this as . If 

 is divisible by  (i.e. ), we can compute the square root of  as follows:

The following tool implements this calculation. In practice, it’s common to skip Euler’s criterion and to verify simply whether the square of the

output is equal to the input. If  is not divisible by  (i.e. ), you can use the Tonelli-Shanks algorithm. The box after that generalizes the

Tonelli-Shanks algorithm to composite moduli, and the last box of this chapter explains why computing square roots is as difficult as factorizing

integers. Since neither of them is relevant for our purposes, you can skip them both.

Modulus p: 11 Next prime Previous prime Input a: 5

a ∈ Z  p 0 0 a

x a =  p x
2 x

a =  

 2
p−1

p (x ) =  

2  2
p−1

p x =  

p−1
p 1

0  2
p−1 p f(a) =  p a − 2

p−1
1 0  2

p−1

 2
p−1 0

p Z  p
× A = Ga

a G A = X =2

(G ) =x 2 G2⋅x p − 1 2 ⋅
x   p − 1

Z  p
×

p − 1 1 A = X2
 2

p−1

p − 1
−1

 =  (
p

a) p a
 2

p−1

a b (a ⋅ b) =  

 2
p−1

p a ⋅ 2
p−1

b  2
p−1

x a p x =  

2
p a

 =  a p ±x
p + 1 4 p =  4 3 a

 =  a p ±a because ( ± 4
p+1

a ) =  

 4
p+1 2

p a =  

 2
p+1

p a ⋅ a a ⋅ 2
p−1

1 =  p a

p + 1 4 p =  4 1

   

mod

=  p

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
https://en.wikipedia.org/wiki/Legendre_symbol
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Radical_symbol
https://en.wikipedia.org/wiki/Plus%E2%80%93minus_sign


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2759 / 92

Euler's criterion: a =  5 =  1

Square root of a: a =  5 =  ±4 =  ±7

Tonelli-Shanks algorithm

The Tonelli-Shanks algorithm, named after Alberto Tonelli (1849 − 1920) and Daniel Shanks (1917 − 1996), finds a square root  of a

quadratic residue  modulo any odd prime  by repeatedly adjusting an initial guess with the help of any quadratic non-residue . The best

known algorithm for finding a quadratic non-residue is to compute Euler’s criterion for random elements of the field  until you find a non-

residue. Since half of all elements are non-residues, it takes on average just two attempts to find a non-residue (because this is a geometric

distribution with a success probability of ). Since  is odd,  is even and can be written as , where  and  is odd. Given that  is

a quadratic residue and  is a quadratic non-residue, we have:

We set  initially. At the core of the algorithm is the expression  with an exponent . When , the expression

evaluates to . Next, we want to decrement  while making

sure that the expression keeps evaluating to . If we can get  to  so that , then  is a square root of . As

explained when we discussed the Miller-Rabin primality test,  and  are the only possible square roots of  modulo a prime number. If the

expression still evaluates to  for an  decremented by , we can keep decrementing  if  is still greater than  without doing anything. If, on

the other hand, the expression evaluates to  for some , we have to adjust the value of  to keep the expression at . You get from

 to  with a factor of . Since  is raised to the -th power, we look for a value  such that . As it turns out, 

 does the trick (  because  at this point): . Therefore, multiplying 

by  brings the expression back to , thereby maintaining our loop invariant. If we haven’t reached , we decrement  again.

The following tool implements the Tonelli-Shanks algorithm for arbitrarily large numbers. To make the output deterministic, it searches for a

quadratic non-residue in the natural order of the field’s elements. In an adversarial context, this can affect the performance of the algorithm

negatively. If ,  immediately, which means that the initial  is the final , and thus the search for a quadratic non-residue

can be skipped. The tool displays the adjusted  only in the next row. If the value in the third column is  (in green), the same  is used in the

next row and the value in the last column is ignored (in gray). I included the ignored values in the last column anyway so that you can see that

the last column does not depend on the input  and that it’s easier to observe that each value in the last column is the square of the value

above it. When you step through the quadratic residues of the field with the buttons next to the input , you’ll see that  sometimes has to be

adjusted in every step and other times not at all. The algorithm presented here can be optimized in several ways. For example, computing the

multiplicative inverse of  can be avoided (see Wikipedia), but I think my version of the algorithm is the easiest one to understand.

Modulus p: 97 Next prime Previous prime Input a: 11 Next residue Previous residue

p − 1 = 2  · d

97 − 1 = 2  · 3

Initial x =  a =  11 =  24

Potential non-residue b Euler's criterion b

2 1

3 1

4 1

5 −1

e x (x  · a ) (b )

3 24 −1 28

2 90 1 8

1 90 −1 64

0 37 1 22

x =  ±37=  ±60

x  =  11

(p − 1) / 2
p

(11 − 1) / 2
11

(p + 1) / 4
p

(11 + 1) / 4
11 11

x

a p b

Z  p

 2
1 p p − 1 2 ⋅c d c > 0 d a

b

  

p − 1

a  2
p−1

b  2
p−1

= 2 ⋅ dc

=  a =  (a ) =  1p
2 ⋅dc−1

p
d (2 )c−1

p

=  b =  (b ) =  −1p
2 ⋅dc−1

p
d (2 )c−1

p

x =  p a
 2

d+1
(x ⋅2 a )−1 (2 )e e e = c − 1

(x ⋅2 a ) =  

−1 (2 )c−1

p ((a ) ⋅ 2
d+1 2 a ) =  

−1 (2 )c−1

p (a ⋅d+1 a ) =  

−1 (2 )c−1

p (a ) =  

d (2 )c−1

p 1 e

1 e 0 (x ⋅2 a ) =  

−1 (2 )e
p x ⋅2 a =  

−1
p 1 x a

1 −1 1
1 e 1 e e 0

−1 e < c − 1 x 1
−1 1 −1 x 2e+1 y y =  

(2 )e+1

p −1 y =
(b )d (2 )c−e−2

c − e − 2 ≥ 0 e ≤ c − 2 ((b ) ) =  

d (2 )c−e−2 (2 )e+1

p (b ) =  

d (2 )c−1

p −1 x

(b )d (2 )c−e−2
1 e = 0 e

c = 1 e = c − 1 = 0 x x

x 1 x

a

a x

a

   

c

5

p
(d + 1) / 2

p
(3 + 1) / 2

97

(p − 1) / 2

2 −1 (2 )e d (2 )c − e − 2

p 97

2
p

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
https://it.wikipedia.org/wiki/Alberto_Tonelli
https://en.wikipedia.org/wiki/Daniel_Shanks
https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Bernoulli_trial
https://en.wikipedia.org/wiki/Loop_invariant
https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm#Core_ideas


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2760 / 92

Square roots modulo composite numbers

Given an integer  and a composite modulus , how can we compute an  so that ? If we know the prime factorization  of 

, we can determine a square root modulo each of the factors since , and then use the Chinese remainder theorem

to revert the isomorphism. If we don’t know the prime factorization of , determining whether  is a quadratic residue modulo  and

computing square roots modulo  is generally (but not always) as difficult as factorizing . This fact is used in some cryptosystems. So far,

we have discussed only how to compute a square modulo an odd prime . Modulo a prime power  for some integer , there are several

cases to consider, which I derived mostly myself:

: , where  and .

 for some integer : If  is even, , where  and 

, because  due to the previous choice of . Otherwise, there

are no square roots because  for some integer . As the prime factorization of an integer

is unique, an integer has an integer square root if and only if every exponent of its prime factorization is even. Since  is not a

multiple of  (it is one off from a multiple of ), its prime factors don’t include , which leaves us with the odd exponent  for the prime

factor . Thus,  has no square roots among the integers.

:

 is odd: As we saw earlier, the multiplicative group modulo a power of an odd prime is cyclic, and Euler’s criterion can be generalized

to any cyclic multiplicative group by replacing  with  in this box. With the same replacement, you can also generalize the

Tonelli-Shanks algorithm to any cyclic multiplicative group. Alternatively, you can “lift” a solution modulo  to modulo 

(recursively starting from ) as explained in section 12.5.2 of Victor Shoup’s book.

 is even (i.e. ): This case is almost always ignored, and the only algorithm I’ve found had no explanation. Fortunately, we can

derive an algorithm for powers of 2 with the following observations:

1. If  (i.e.  is a multiple of ), then  for some positive integer  because any multiple of  is also a

multiple of .

2. Whenever ,  is also a solution because .

3. Whenever ,  is also a solution because .

4. If ,  has exactly four solutions, namely , , , and , as . Since 

 is a multiple of  and , both  and  are even (if they both were odd,

their product couldn’t be a multiple of ), and one of them is not a multiple of . Consequently, the other one has to be a multiple of 

 for their product to be a multiple of . Since the only multiples of  modulo  are  and ,  has to be next to them,

which gives us the four aforementioned solutions.

5. In the case of , the solutions of  are , , , and  according to the previous point, which you can verify with the

repetition table of multiplicative groups. As you can also see, , , and  have no square roots modulo .

6. Combined with the first observation,  for some  has no solutions if  is odd and .

7. The integers which are coprime with the modulus (i.e. all odd integers in the case of ) form a multiplicative group. As we saw

earlier, the power function (squaring in this case) is a homomorphism. As explained in the fourth observation, the size of its kernel is 

. Since a homomorphism maps two inputs to the same output if and only if they belong to the same coset of its kernel, an odd  has

either four square roots or none modulo  for some  since all cosets contain the same number of elements as the kernel.

Given a solution , you obtain the other solutions by multiplying  with each element of the kernel. Since the odd integer  can be

written as  for some integer , , which matches

our third observation.

8. The four solutions , , , and  to  for an odd  and some  are also solutions to  according

to the first observation. In this case, however,  and , which means that the four solutions modulo 

map to two of the four solutions modulo . Moreover, either  or  modulo  is already between  and , which means

that one element stays the same when the two halves are mapped to one half by computing modulo . The same is true for  and 

 as well, which we can depict as follows:

±2e 

±2e−1 

0 2e−1 2e 2e+1 

The four solutions to  in green are mapped to two of the four solutions modulo  in blue.

When given any of the four solutions in blue, you may have to add  to obtain a solution in green.

a m x x =  

2
m a  p  ∏i=1

l
i
e  i

m Z  ≅m Z  ×p  1
e  1 … × Z  p  l

e  l

m a m

m m

p pe e ≥ 1

a =  pe 0 x =  pe cp
d d = ⌈  ⌉2

e c ∈ {0, 1, … , p −e−d 1}

a =  pe p
b b ≥ 1 b x =  pe ±(p +b/2 cp )d d = max(⌈  ⌉, e −2

e
 −2
b (1 − p   2)) c ∈

{0, 1, … , p −e−d 1} x =  

2
pe (p +b/2 cp ) =  

d 2
pe p +b 2cp +b/2+d c p =  

2 2d
pe a d

p =  

b
pe x ⟺2 p +b tp =e p (1 +b tp ) =e−b x2 t

1 + tpe−b

p p p b

p p (1 +b tp )e−b

(a, p ) =e 0

p

p − 1 (p )e

pe−1 pe

p1

p p = 2

x =  

2
pe a x −2 a pe x =  

2
pd a d ≤ e pe

pd

x =  

2
pe a −x (−x) ((−1)x) =2 2 (−1) x (−(−1))x x2 2 2 2

x =  

2
2e a x + 2e−1 (x + 2 ) =  

e−1 2
2e x +2 2x2 +e−1 2 =  

2(e−1)
2e x

2

e ≥ 3 x =  

2
2e 1 1 1 + 2e−1 −1 −(1 + 2 ) =  

e−1
2e −1 + 2e−1 −2 =  

e−1
2e 2e−1

x −2 1 = (x + 1)(x − 1) 2e (x + 1) − (x − 1) = 2 x + 1 x − 1
2e 4

2e−1 2e 2e−1 2e 0 2e−1 x

e = 3 x =  

2
8 1 1 3 5 7

3 5 7 8

x =  

2
2e a e ≥ 3 a a % 8 = 1

m = 2e

4 a

2e e ≥ 3
x x x

1 + b ⋅ 2 b x(1 + 2 ) =  

e−1
2e x + (1 + b ⋅ 2)2 =  

e−1
2e x + 2 +e−1 b ⋅ 2 =  

e
2e x + 2e−1

x x + 2e −x −x + 2e x =  

2
2e+1 a a e ≥ 3 x =  

2
2e a

x + 2 =  

e
2e x −x + 2 =  

e
2e −x 2e+1

2e x x + 2e 2e+1 0 2e

2e −x
−x + 2e

x =  

2
2e+1 a 2e

2e−1

%

gcd

φ

= = =

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Quadratic_residuosity_problem
https://en.wikipedia.org/wiki/Cocks_IBE_scheme
https://en.wikipedia.org/wiki/Goldwasser%E2%80%93Micali_cryptosystem
https://en.wikipedia.org/wiki/Prime_power
https://en.wikipedia.org/wiki/Hensel%27s_lemma#Hensel_lifting
https://shoup.net/ntb/ntb-v2.pdf
https://www.johndcook.com/blog/quadratic_congruences/
https://math.stackexchange.com/a/845498/947937


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2761 / 92

9. Given a solution  to , either  or  is also a solution to  because the two solutions which  and 

 have in common differ in their sign and not by  according to the previous point.

When given any of the four solutions to , the initial solution may be in the wrong column.

The row, on the other hand, doesn’t matter: If  isn’t a solution to , then neither is .

These observations result in the following algorithm: Since  in this branch,  and any solution  are odd. If , return 

. If , return  if  and  otherwise. (There are only two solutions in this case because  for .)

If , return . Set . For  from  to , add  to  if . Return .

 for some integer : This means that  for some integer , where . You get the solutions by

multiplying each solution  to  with each solution  to . You find the solutions to these subproblems according to the

previous two cases. Please note that these products are not all different from one another. Clearly, all these products are solutions to 

 because . It’s less obvious why these are the only solutions. Since 

 for some integer  and  is not a multiple of  because  isn’t a multiple of , the prime factorization of 

has to include  with an exponent of . But as noted in the second case, solutions to  can be shifted by multiples of . The other

prime factors are determined by , which means that you can use the solutions to  instead of

the solutions to .

The following tool computes the square roots of the given input modulo the specified composite integer as described above:

Modulus m: 72 Input a: 28

m = 72 = 2  · 3

p Equation Solutions

2 x  =  4 x ∈ {2, 6}

3 x  =  1 x ∈ {1, 8}

Combined: x  =  28 x ∈ {10, 26, 46, 62}

Why integer factorization isn’t more difficult

In the previous box, we saw how the square roots modulo a composite number can be computed efficiently if the prime factorization of the

modulus is known. This means that an efficient algorithm for factorizing integers would lead to an efficient algorithm for computing the

square roots modulo a composite number. In this box, we show that the opposite is also true: An efficient algorithm for computing the square

roots modulo a composite number would lead to an efficient algorithm for factorizing integers. Being able to reduce each of these two

problems to the other one efficiently (i.e. in polynomial time) implies that these two problems are of similar computational complexity. Since

no efficient algorithm is known for either of these two problems, both problems are believed to be difficult to solve for large inputs.

For the sake of simplicity, we assume that the number , which we want to factorize, is the product of two odd primes  and  (i.e. ).

Since there are two solutions to  and two solutions to  as proven earlier, there are four solutions to  because 

. (Two of the solutions are the additive inverses of the other two.) Since we haven’t specified whether the algorithm has to find one

square root of the given input  or all of them, there are two possibilities to consider:

The efficient algorithm for computing square roots modulo a composite number returns all four solutions: Compute the four square roots

of an arbitrary quadratic residue , such as . Choose distinct  and  from the four square roots so that . Since , 

 is a multiple of . However,  divides neither  (as ) nor  (as ), which means that 

has to divide one of the factors and  the other. (If the prime factorization of one of these factors contained both  and ,  would divide

this factor.) Therefore, , which can be computed efficiently with the Euclidean algorithm, equals either  or , which means

that we have successfully factorized .

The efficient algorithm for computing square roots modulo a composite number returns just one pair of solutions: Choose a random 

between  and , and compute . By feeding this value  into the square-root-finding algorithm, you get a value  so that .

Since the value  has been chosen randomly, the chance that  is exactly 50%. If , you repeat the process for another

randomly chosen  until . Now again,  equals either  or .

x x =  

2
2e a x x + 2e−1 x =  

2
2e+1 a x =  

2
2e a

x =  

2
2e+1 a 2e−1

±2e−1

⋅(−1)
x x + 2e−1

−x −x + 2e−1

x =  

2
2e a

x x =  

2
2e+1 a 2 −e x

gcd(a, 2 ) =e 0 a x e = 1
{1} e = 2 {1, 3} a =4 1 {} x + 2 =  4 −x x ∈ {1, 3}
a % 8 = 1 {} x := 1 i 3 e − 1 2i−1 x x =  

2 2i+1 a {x, 2 −e−1 x, 2 +e−1 x, 2 −e x}

gcd(a, p ) =e pb b ≥ 1 a =  pe p c
b c gcd(c, p ) =e 0

x  1 x =  

2
pe p

b x  2 x =  

2
pe c

x =  

2
pe a (x  x  ) =  1 2

2
pe x  x  =  1

2
2
2

pe p c =  

b
pe a p c =  

b
pe x ⟺2 p c +b

tp =e p (c +b tp ) =e−b x2 t c + tpe−b p c p x

p  2
b x =  

2
pe p

b pd

c + tp =e−b x ⟺2 c =  pe−b x
2 x =  

2
pe−b c

x =  

2
pe c

   

3 2

e

3 2
8

2 2
9

2
72

n p q n = p ⋅ q
x =  

2
p a x =  

2
q a x =  

2
n a Z  ≅n

Z  ×p Z  q

a

a 1 x y x =  n −y x =  

2
n y =  

2
n a

x −2 y =2 (x + y)(x − y) n n x + y x =  n −y x − y x =  n y p

q p q n

gcd(x ± y,n) p q

n

x

0 n a =  n x
2 a y y =  

2
n a

x y =  n ±x y =  n ±x
x x =  n ±y gcd(x ± y,n) p q

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Empty_set
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time
https://www.quora.com/How-is-the-theoretical-modular-square-root-on-composite-modulus-considered-equivalent-to-integer-factorization/answer/Senia-Sheydvasser
https://www.quora.com/How-is-the-theoretical-modular-square-root-on-composite-modulus-considered-equivalent-to-integer-factorization/answer/Mark-Gritter


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2762 / 92

Elliptic curves (EC)
Elliptic curves are the other popular way to construct linear one-way functions as they lead to shorter outputs and faster group operations than

multiplicative groups for the same level of security. Many cryptosystems which rely on the discrete-logarithm problem of multiplicative groups

have been adapted to work over elliptic curves. Since elliptic-curve cryptography (ECC) is in practice always implemented with standardized

elliptic curves, we’ll focus on how to work with given curve parameters instead of how to come up with new parameters. Unlike earlier chapters,

this chapter covers just the bare minimum without any proofs.

Curve equation
An elliptic curve consists of the two-dimensional points whose - and -coordinates satisfy the equation , where  and  are

the parameters of the curve. By an appropriate change of variables (see below), almost any cubic curve can be written in the above form, which is

known as the Weierstrass normal form, named after Karl Theodor Weierstrass (1815 − 1897). The equation is defined over a field, to which , ,

and all coordinates belong. Over the real numbers, an elliptic curve looks like this:

x

y

3

2

1

0

−1

−2

−3

−2 −1 0 1 2

The curve  over the real numbers.

Smoothness

For the group operation to be well defined (see the next section), the curve has to be smooth, which means every point on the curve has a

unique tangent. An elliptic curve is smooth (non-singular) if it has no cusps and does not intersect itself. This is the case if and only if the

polynomial on the right-hand side of the equation has no repeated roots, which is the case if and only if its discriminant  is not

zero. Let’s look at two examples, where this is not the case:

x y y =2 x +3 a ⋅ x + b a b

a b

y =2 x −3 x + 1

−4a −3 27b2

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Implementation
https://en.wikipedia.org/wiki/Two-dimensional_Euclidean_space
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Change_of_variables
https://en.wikipedia.org/wiki/Cubic_plane_curve
https://en.wikipedia.org/wiki/Karl_Weierstrass
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Well-defined_expression
https://en.wikipedia.org/wiki/Smoothness
https://en.wikipedia.org/wiki/Tangent
https://en.wikipedia.org/wiki/Singular_point_of_an_algebraic_variety
https://en.wikipedia.org/wiki/Cusp_(singularity)
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Square-free_polynomial
https://en.wikipedia.org/wiki/Discriminant#Degree_3


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2763 / 92

x

y

3

2

1

0

−1

−2

−3

−2 −1 0 1 2

When  and , we have  with a cusp at . (  is a root of multiplicity .)

x

y3

2

1

0

−1

−2

−3

−2 −1 0 1 2

When  and , we have . (  is a root of multiplicity .)

What about x ?

You may have noticed that the above equation defining elliptic curves misses the  term. The reason for this is that a cubic polynomial of the

form  can be turned into a so-called depressed cubic of the form  by replacing  with ,

thereby shifting the input, which means :

In order to get the promised form, we need to divide the polynomial by , thereby scaling the output. Therefore, we have:

a = 0 b = 0 y =2 x3 (0, 0) 0 3

a = −3 b = 2 y =2 x −3 3x + 2 = (x − 1) (x +2 2) 1 2

2

x2

c(z) = sz +3 tz +2 uz + v d(x) = x +3 ax + b z x −  3s
t

c(x −  ) =3s
t d(x) ⟺ c(z) = d(z +  )3s

t

c(x −  )
3s
t

= s(x −  ) + t(x −  ) + u(x −  ) + v
3s
t 3

3s
t 2

3s
t

= s(x − 3 x + 3  x −  ) + t(x − 2  x +  ) + u(x −  ) + v3

3s
t 2

3 s2 2

t2

3 s3 3

t3 2

3s
t

3 s2 2

t2

3s
t

= sx + ((−t) + t)x + (  − 2  + u)x + (−  ) +  − u  + v3 2

3s
t2

3s
t2

3 s3 2
t3

3 s2 2
t3

3s
t

= sx +  x +  

3

3s
3su − t2

27s2

2t − 9stu + 27s v3 2

s

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Multiplicity_(mathematics)#Multiplicity_of_a_root_of_a_polynomial
https://en.wikipedia.org/wiki/Cubic_function
https://en.wikipedia.org/wiki/Cubic_equation#Depressed_cubic


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2764 / 92

This change of variable doesn’t work if the polynomial is defined over a finite field whose so-called characteristic is  because in this case, 

, and we cannot divide by . In the case of elliptic curves, there are even more terms to consider, such as , which you cannot get rid

of if the characteristic of the underlying field is . As you can see, things become complicated quickly.

Point addition
Together with the point at infinity, which we’ll discuss in the next section, the points on an elliptic curve form a group under the operation

described in this and the next section. Even though this operation has nothing to do with arithmetical addition, it’s called point addition, and it’s

written using the additive notation. I denote the -coordinate of a point  as  and its -coordinate as , which means that the point  is

defined by the ordered pair . Given two points  and  where , you get their sum  by determining where the

straight line which passes through  and  intersects the elliptic curve for the third time and then reflecting this point across the  axis:

x

y

dx

dy

A

+

B

−C

= C

The sum  of  and  where .

As we will see in the next section, the point  is the inverse of . Since the curve equation is  and 

 in any field, every elliptic curve is symmetric around the  axis, and thus  is guaranteed to be on the curve as well. In order to implement

elliptic curves on a computer, we have to work out the geometric operation algebraically, i.e. as equations involving variables. The equation of a

straight line is , where  is the slope of the line and  is the value at which the line crosses the  axis. The slope of the line which

passes through  and  is calculated as the ratio of their vertical difference (marked as  in the graph above) and their horizontal difference

(marked as ):

Since the formulas for  and  won’t involve , we don’t have to determine its value. The line through  and  intersects the elliptic curve

wherever they have the same  value for the same  value. This means that the -coordinate of any intersection point has to fulfill 

, which can be rewritten as . Based on the geometric interpretation, we know that the

solutions of this equation are , , and . Since a value  is a so-called root of a polynomial  if and only if  divides  (we’ll

discuss this in the article about coding theory, see Wikipedia for now), we have 

. Since the coefficients of two equal polynomials are equal, we

have , which we can solve for :

We get the value  by extrapolating the slope from  or : . Therefore:

a

b

=  

3s2

3su − t2

=  

27s3

2t − 9stu + 27s v3 2

3
3s = 0 0 xy

2

x A A  x y A  y A

(A  ,A  )x y A B A  =x  B  x C = A + B

A B x

C A B A  =x  B  x

−C = (C  , −C  )x y C y =2 x +3 a ⋅ x + b y =2

(−y)2 x C

y = s ⋅ x + t s t y

A B dy

dx

s =  =
dx

dy
 =

B  − A  x x

B  − A  y y
 

A  − B  x x

A  − B  y y

C  x C  y t A B

y x x (sx + t) =2

x +3 ax + b x −3 s x +2 2 (a − 2st)x + b − t =2 0
A  x B  x C  x r f(x) (x − r) f(x)

x3 − s x +2 2 (a − 2st)x + b − t =2 (x − A  )(x −x B  )(x −x

C  ) =x x +3 (−A  − B  − C  )x +x x x
2 (A  B  C  +x x x A  C  +x x B  C  )x −x x A  B  C  x x x

−s = −A  − B  − C  

2
x x x C  x

C  =x s −2 A  −x B  x

−C  y A B −C  =y A  +y s(C  −x A  ) =x B  +y s(C  −x B  )x

C  =y s(A  −x C  ) −x A  =y s(B  −x C  ) −x B  y

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Change_of_variables
https://en.wikipedia.org/wiki/Characteristic_(algebra)
https://en.wikipedia.org/wiki/Division_by_zero
https://en.wikipedia.org/wiki/Elliptic_curve#Elliptic_curves_over_a_general_field
https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Ordered_pair
https://en.wikipedia.org/wiki/Line_(geometry)
https://en.wikipedia.org/wiki/Intersection
https://en.wikipedia.org/wiki/Axis_(mathematics)
https://en.wikipedia.org/wiki/Elementary_algebra
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Line_(geometry)#In_Cartesian_coordinates
https://en.wikipedia.org/wiki/Slope
https://en.wikipedia.org/wiki/Zero_of_a_function
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Polynomial#Solving_equations
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Equating_coefficients


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2765 / 92

Based on the geometric construction and these formulas, it’s apparent that this operation is commutative, i.e. . We can move the

points  and  closer and closer together until , at which point the line through  and  becomes a tangent:

x

y

A + A
−D

= D

The sum  of  and  (called doubling).

Since in this case , we can no longer compute the slope  as . Instead, we have to differentiate the function 

, whose derivative is  according to the chain rule. We get the slope  of the tangent by

evaluating  at . The coordinates of the point  are then determined similarly to the point  above:

Please note that you can get a tangent not just by doubling a point. The same tangent is used when determining  with the

previous set of equations. In other words, the point  can be equal to the point  or  in the first graphic of this section.

Associativity of point addition

In order to form a group, point addition has to be associative, i.e. for any points , , and , it has to be that .

Unfortunately, it’s rather difficult to prove that this is always the case. You find explanations for this fact here and here. I’ll just visualize what

associativity means geometrically:

A + B = B + A

A B A = B A B

D A A

dx = B  −x A  =x 0 s  

dx
dy f(x) = (x +3

ax + b)  2
1

f (x) =′ (x +2
1 3 ax + b) (3x +−  2

1 2 a) =  2f(x)
3x +a2

s′

f ′ A  x D C

  

s′

D  x

D  y

=  

2A  y

3A  + ax
2

= s − 2A  

′2
x

= s (A  − D  ) − A  

′
x x y

(−D) + A = −A
−C A B

A B C (A + B) + C = A + (B + C)

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Tangent
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Point_doubling
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Chain_rule
https://books.google.ch/books?id=2_PLCQAAQBAJ&pg=PA14
https://www.maths.tcd.ie/pub/Maths/Courseware/EllipticCurves/2016/Associativity.pdf


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2766 / 92

x

y

A

B
C

A + B

A + B + C

B + C

No matter whether you add  or  first, you end up in the same spot when determining .

Why is there always a third intersection?

As explained above, a point is at an intersection of an elliptic curve and a straight line if and only if its -coordinate satisfies 

. The left-hand side of this equation is a cubic function, which crosses the  axis at least once because it is

continuous and goes from  to  or vice versa. This can be visualized as follows:

x

y
2

1

0

−1

−2

−1 0

The cubic function  has only a single root because its factor  has no roots among the real numbers (but  and 

among the complex numbers). Other cubic functions cross the  axis three times, which is apparent from their factors:

x

y
2

1

0

−1

−2

−1 0 1

Instead of crossing the  axis again, a cubic function, such as , can just “touch” the  axis (at  in this case):

A + B B + C A + B + C

x x −3 s x +2 2

(a − 2st)x + b − t =2 0 x

= f(∞) = ∞

y = x +3 x +2 x + 1 = (x + 1)(x +2 1)

x +3 x +2 x + 1 x +2 1 i −i
x

y = x −3 x = (x + 1)x(x − 1)

x x −3 x −2 x + 1 x (1, 0)

f(−∞) −∞

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Cubic_function
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Zero_of_a_function
https://en.wikipedia.org/wiki/Polynomial#Factoring
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Infinity_symbol


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2767 / 92

x

y2

1

0

−1

−2

−1 0 1

As you can see from its factors, the root at  has a multiplicity of . This has to be the case because when you factor out two roots from a

polynomial of degree , you’re left with a polynomial of degree , which always has a root. Therefore, a cubic function has either one or three

real roots, which don’t have to be distinct. Since point addition involves two points (roots), you’re guaranteed to find a third point (root) on

the same line, where a point of tangency is simply counted twice.

Why flip the intersection over the x axis?

If we didn’t reflect the third intersection across the  axis, we would have , , and  because the

collinearity of the three points is symmetric (i.e. if  lies on the same line as  and ,  lies on the same line as  and ):

x

y

A

B

C

−A

−B

−C

Three collinear points , , and  with their reflections.

By inserting the value of  from the second equation into the first equation, we would get . Assuming that point addition

forms a group (this is our goal after all),  would have to equal the identity element. Since  is an arbitrary point on the elliptic curve,

every point on the curve would have an order of , which is not what we want. We can see this more directly by repeating an element . If 

 equaled , we would get back to  by adding  again, i.e. :

y = x −3 x −2 x + 1 = (x + 1)(x − 1)2

x = 1 2
3 1

x A + B = C A + C = B B + C = A

C A B B A C

A B C

B A + (A + C) = C

A + A A

2 D

D + D E D D E + D = D

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Multiplicity_(mathematics)#Multiplicity_of_a_root_of_a_polynomial
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Degree_of_a_polynomial
https://en.wikipedia.org/wiki/Tangent
https://crypto.stackexchange.com/questions/53974/when-adding-two-points-on-an-elliptic-curve-why-flip-over-the-x-axis
https://en.wikipedia.org/wiki/Collinearity


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2768 / 92

x

y

D
E

The tangent at  intersects the elliptic curve at .

This would make any such point  an identity element, which contradicts the uniqueness of the identity element in a group. Moreover, the

modified operation would not be associative, which can be seen on the basis of the following counterexample:

x

y

X

Y

Z

X + Y (X + Y) + Z

Y + Z

X + (Y + Z)

How associativity is violated by the modified operation. (I know that this

graph is ugly, but it wasn’t easy to keep all the intersections in the image.)

Now let’s go back to the three collinear points , , and  at the beginning of this box. If  and , then 

, which works only if each element is its own inverse. If, on the other hand,  and , which corresponds

to the actual point addition above, we get the same expression in both cases, namely , where  is the identity element,

which we’ll discuss next.

Point at infinity
Due to closure, we have to be able to add any two points together, including a point and its opposite reflected across the  axis. In this case,

however, the line which passes through them intersects the elliptic curve only twice because every element of a field has at most two roots. Since

a vertical line cannot be expressed as , this does not violate the explanation of why you always find a third intersection. In order to

give vertical lines a third intersection, we introduce a special point, which is known as the point at infinity and usually denoted by the capital letter

. It is a single point which lies on every vertical line. Since parallel lines don’t intersect in a normal Euclidean plane, elliptic curves are defined in a

so-called projective plane, where any two distinct lines intersect at exactly one point. The point at infinity serves as the identity element of our

D E

E

A B C A + B = C A + C = B A + B − C =
A − B + C A + B = −C A + C = −B

A + B + C = O O

x

y = s ⋅ x + t

O

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Counterexample
https://en.wikipedia.org/wiki/Point_at_infinity
https://en.wikipedia.org/wiki/Parallel_(geometry)
https://en.wikipedia.org/wiki/Two-dimensional_Euclidean_space
https://en.wikipedia.org/wiki/Projective_plane


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2769 / 92

group. The inverse of any element other than  is its reflection across the  axis, i.e. . The point at infinity is its own inverse,

though, i.e. . This is why you can’t imagine  to be at , unless you’re willing to turn the plane into a cylinder in order to make 

. The idea of fitting a line through the points that we add breaks down anyway in the case of . By being the identity element, it

results in itself when it is added to itself, i.e. . Therefore, don’t imagine too much and simply treat  as a special case.

x

y

A

−A

O

, but also  by reflecting the other intersection.

Where the elliptic curve crosses the  axis, the point of intersection is its own inverse, and the tangent to the curve is vertical:

x

y

B

−B

O

 and .

With different parameters, an elliptic curve can cross the  axis more than once. You find an example of this in the first box below.

Example of separated curve

An elliptic curve separates into two components if its discriminant  is positive:

O x −A = (A  , −A  )x y

−O = O O (0, ∞)
(0, −∞) = (0, ∞) O

O + O = O O

A + (−A) = O O + A = A

x

B = −B B + B = O

x

−4a −3 27b2

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Cylinder
https://en.wikipedia.org/wiki/Discriminant#Degree_3


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2770 / 92

x

y

3

2

1

0

−1

−2

−3

−2 −1 0 1 2

The curve  (i.e.  and ). 

This curve crosses the  axis at .

Pseudocode for point addition

We can combine the various cases of point addition into the following pseudocode, but make sure to read the warnings below:

While this code works and is exactly how I implemented point addition for the tools in this chapter, you should not use it for cryptographic

purposes. In order to avoid timing attacks, cryptographic algorithms should run in constant time, i.e. perform the same operations no matter

the inputs. How to achieve this is beyond the scope of this article. Common techniques include using homogeneous/projective coordinates

instead of Cartesian coordinates and working with (twisted) Edwards curves, named after Harold Mortimer Edwards (1936 − 2020), instead

of curves in Weierstrass form. The advantages of Edwards curves are that the formulas for addition and doubling are the same and that the

identity element is an ordinary point.

Discrete curves

y =2 x −3 x a = −1 b = 0
x x = −1, 0, and 1

const a := …
function add(A,B) {

if (A = O) {

return B
} else if (B = O) {

return A
} else if (A = −B) {

return O

} else {
let s

if (A = B) {

s :=  

2A  y

3A  + ax
2

} else {

s :=  

B  − A  x x

B  − A  y y

}
let x := s −2 A  −x B  x

return new Point(x, s(A  −x x) − A  )y
}

}

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Timing_attack
https://en.wikipedia.org/wiki/Timing_attack#Avoidance
https://crypto.stackexchange.com/questions/86692/what-is-a-constant-time-work-around-when-dealing-with-the-point-at-infinity-fo
https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://en.wikipedia.org/wiki/Harold_Edwards_(mathematician)
https://en.wikipedia.org/wiki/Edwards_curve


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2771 / 92

Elliptic curves as presented so far are not suitable for computers because computers can represent real numbers only with limited precision,

which leads to inaccuracies. Fortunately, we can define elliptic curves also over finite fields, using the same equations for point addition as before,

even though a tangent is no longer well defined. The elliptic curve we used so far looks as follows over :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

x

y

The elliptic curve  over the field .

We can make several observations based on this example:

Symmetry: The elliptic curve is still symmetric about the  axis, i.e. if  is a solution to the curve equation for some value of , then so is  but

no other value. Since  is usually represented as  when computing modulo , the symmetry that you see in the graph above is about 

 rather than about  because the values from  to  are displayed above and not below the values from  to . If we ignore

extension fields,  is odd, and thus either  or  is even while the other value is odd.

Gaps: Not every element of a finite field has square roots. If  results in a quadratic non-residue, the elliptic curve has no points at

such an  value. In the example above, this is the case for .

Order: The point at  is its own inverse. Since its order is , we know that this group has an even number of points. (You will count only 

points, but you also have to include the point at infinity.)

Counting the points on elliptic curves

The elements of an elliptic-curve group are . In order to determine the

group’s order, we have to count the points on the elliptic curve. A naive approach of doing so is to determine for each possible  whether 

 is a quadratic residue. If this is the case, you increase your counter by . If , you increase your counter by .

However, this approach is computationally infeasible for the large finite fields that we need in elliptic-curve cryptography. René Schoof (born

in 1955) published an efficient algorithm for counting the points on elliptic curves over finite fields in 1985. Unfortunately, his algorithm is

too complicated for this introductory article.

Point calculator
The following tool implements point addition and repetition for elliptic curves in Weierstrass normal form over prime fields of arbitrary size. If

you want a visualization of point addition on discrete curves, you can use this tool by Andrea Corbellini.

F  19

y =  

2
19 x −3 x + 1 F  19

x y x −y
−y p − y p

y =  =2
p 9.5 y = 0 −9 −1 0 9

p y p − y

x +3 a ⋅ x + b

x x ∈ {6, 7, 9, 10, 11, 14, 16, 17}

(13, 0) 2 21

{(x, y) ∈ ∣ y =2 x +3 a ⋅ x + b 4a +3 27b =2  0} ∪ {O}
x

x +3 a ⋅ x + b 2 x +3 a ⋅ x + b = 0 1

Modulus p: 19 Next prime Previous prime

Parameter a: −1

Parameter b: 4

A x value: 1

B x value: 1

B y even:

Coefficient c: 15

   

F× F ∧

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Numerical_stability
https://en.wikipedia.org/wiki/Tangent
https://en.wikipedia.org/wiki/Well-defined_expression
https://en.wikipedia.org/wiki/Field_extension
https://en.wikipedia.org/wiki/Counting_points_on_elliptic_curves
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Ren%C3%A9_Schoof
https://en.wikipedia.org/wiki/Schoof%27s_algorithm
https://andrea.corbellini.name/ecc/interactive/modk-add.html
https://andrea.corbellini.name/about/
https://en.wikipedia.org/wiki/Cartesian_product


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2772 / 92

Elliptic curve: y  = x  − x + 4 over 𝔽

A = (1, 2)

B = (1, 2)

A + B = (1, 2) + (1, 2) = (3, 16)

−B = −(1, 2) = (1, 17)

A − B = (1, 2) − (1, 2) = O

cA = 15(1, 2) = (15, 18)

Operation table
The following tool generates the operation table for elliptic curves in Weierstrass normal form over prime fields smaller than 100:

Modulus p: 7 Next prime Previous prime Parameter a: −1 Parameter b: 4

y  = x  − x − 3 over 𝔽  with 10 points (10 = 2 · 5)

Since point addition is commutative, the above table is symmetric about the diagonal from the upper left to the lower right. The tool highlights the

point at infinity with a green background and elements which are their own inverse (i.e. elements whose -coordinate is ) with a gray

background. Since inverses are displayed next to each other and  implies that , you have two by two squares

with inverses diagonally opposite of each other:

∘ ⋯ B −B ⋯

⋮ ⋮ ⋮

A ⋯ C D ⋯

−A ⋯ −D −C ⋯

⋮ ⋮ ⋮

Symmetries within the operation table.

Repetition table
Since the points on an elliptic curve together with the point at infinity form a group under point addition, repeatedly adding a point to itself, which

is known as point multiplication, generates a subgroup, whose order divides the order of the group according to Lagrange’s theorem. You can

verify that this is the case for moduli up to 100 with the following tool:

A y even:

2 3
19

   

2 3
7

+ O (0, 2) (0, 5) (1, 2) (1, 5) (3, 0) (4, 6) (4, 1) (6, 2) (6, 5)

O O (0, 2) (0, 5) (1, 2) (1, 5) (3, 0) (4, 6) (4, 1) (6, 2) (6, 5)

(0, 2) (0, 2) (4, 6) O (6, 5) (1, 2) (6, 2) (4, 1) (0, 5) (1, 5) (3, 0)

(0, 5) (0, 5) O (4, 1) (1, 5) (6, 2) (6, 5) (0, 2) (4, 6) (3, 0) (1, 2)

(1, 2) (1, 2) (6, 5) (1, 5) (0, 2) O (4, 1) (3, 0) (6, 2) (0, 5) (4, 6)

(1, 5) (1, 5) (1, 2) (6, 2) O (0, 5) (4, 6) (6, 5) (3, 0) (4, 1) (0, 2)

(3, 0) (3, 0) (6, 2) (6, 5) (4, 1) (4, 6) O (1, 5) (1, 2) (0, 2) (0, 5)

(4, 6) (4, 6) (4, 1) (0, 2) (3, 0) (6, 5) (1, 5) (0, 5) O (1, 2) (6, 2)

(4, 1) (4, 1) (0, 5) (4, 6) (6, 2) (3, 0) (1, 2) O (0, 2) (6, 5) (1, 5)

(6, 2) (6, 2) (1, 5) (3, 0) (0, 5) (4, 1) (0, 2) (1, 2) (6, 5) (4, 6) O

(6, 5) (6, 5) (3, 0) (1, 2) (4, 6) (0, 2) (0, 5) (6, 2) (1, 5) O (4, 1)

y 0
A + B = C (−A) + (−B) = (−C)

Modulus p: 7 Next prime Previous prime

Parameter a: −1

Parameter b: 4

Repeat:

Order:

Totient:

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2773 / 92

y  = x  − x − 3 over 𝔽  with 10 points (10 = 2 · 5)

If you play around with the above tool, you can observe the following facts:

Non-cyclic groups: Not all elliptic curves are cyclic. Example: p = 7, a = 3, b = 0.

Groups of prime order: There are elliptic curves whose order is prime, which is not possible in the case of multiplicative groups. Example: p = 7,

a = 3, b = 5.

Elements of even order: Whenever an element has an even order, the element at half its order is its own inverse and thus marked with a gray

background. Example: p = 7, a = 3, b = 1.

Subgroup cosets
For the sake of completeness, the following tool shows the cosets of the subgroup which is generated by the given point (see above):

Elliptic-curve discrete-logarithm problem (ECDLP)
Similar to the discrete-logarithm problem of multiplicative groups, it’s believed that determining how many times a point on an elliptic curve has

been repeated is computationally infeasible if the order of the point is large enough and the curve has no known weakness. This means that under

the right conditions, you cannot find the coefficient  so that  in a reasonable amount of time, where  is a generator and  is an

arbitrary point on the curve. Since many algorithms for finding the number of repetitions work in multiplicative groups and on elliptic curves, this

problem is still known as the discrete-logarithm problem, even though “point-division problem” would be more accurate, given that the additive

notation is used for groups based on elliptic curves.

   

2 3
7

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A

O

(0, 2) (4, 6) (4, 1) (0, 5) O

(0, 5) (4, 1) (4, 6) (0, 2) O

(1, 2) (0, 2) (6, 5) (4, 6) (3, 0) (4, 1) (6, 2) (0, 5) (1, 5) O

(1, 5) (0, 5) (6, 2) (4, 1) (3, 0) (4, 6) (6, 5) (0, 2) (1, 2) O

(3, 0) O

(4, 6) (0, 5) (0, 2) (4, 1) O

(4, 1) (0, 2) (0, 5) (4, 6) O

(6, 2) (4, 6) (1, 2) (0, 5) (3, 0) (0, 2) (1, 5) (4, 1) (6, 5) O

(6, 5) (4, 1) (1, 5) (0, 2) (3, 0) (0, 5) (1, 2) (4, 6) (6, 2) O

Modulus p: 7 Next prime Previous prime

Parameter a: −1

Parameter b: 4

A x value: 0 Random

A y even:

Unique:

Delay: 0.5

   

O (0, 2) (4, 6) (4, 1) (0, 5)

(0, 2) (4, 6) (4, 1) (0, 5) O

(0, 5) O (0, 2) (4, 6) (4, 1)

(1, 2) (6, 5) (3, 0) (6, 2) (1, 5)

(1, 5) (1, 2) (6, 5) (3, 0) (6, 2)

(3, 0) (6, 2) (1, 5) (1, 2) (6, 5)

(4, 6) (4, 1) (0, 5) O (0, 2)

(4, 1) (0, 5) O (0, 2) (4, 6)

(6, 2) (1, 5) (1, 2) (6, 5) (3, 0)

(6, 5) (3, 0) (6, 2) (1, 5) (1, 2)

k kG = K G K

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Domain_parameters
https://en.wikipedia.org/wiki/Computational_problem


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2774 / 92

Curve parameters
In elliptic-curve cryptography, an elliptic curve is defined by the following six parameters:

 specifies the prime field  over which the elliptic curve is defined.

 is the first parameter of the curve equation .

 is the second parameter of the curve equation .

 is the generator which all users of a particular curve share.

 specifies the order of , i.e.  and .

 is the cofactor of the subgroup generated by .

As mentioned in the previous section, certain choices of parameters have known weaknesses and should thus be avoided. The bigger problem in

the standardization of elliptic curves are potential weaknesses which are not yet publicly known. Ideally, all parameters are chosen in a

predictable manner in order to reduce the risk of a hidden backdoor.

Curve secp256k1

Bitcoin, Ethereum, and many other cryptocurrencies use an elliptic curve called secp256k1 in their signature algorithm, which is defined in

Standards for Efficient Cryptography (SEC) by the Standards for Efficient Cryptography Group (SECG). The letter p indicates that the curve

is defined over a prime field. It is followed by the length of the prime  in bits. The letter k stands for Koblitz curve, named after Neal Koblitz

(born in 1948), which allows for especially efficient implementations. The 1 at the end is just a sequence number. secp256k1 has the

following curve parameters in hexadecimal notation (see section 2.4.1 on page 9):

 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F 

(The proximity to  allows for faster implementations of the modulo operation.)

 (79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798, 483ADA77 26A3C465 5DA4FBFC 0E1108A8
FD17B448 A6855419 9C47D08F FB10D4B8)

 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

You can click on the hexadecimal numbers to convert them to decimal numbers with the tool in the next box. You can verify with the Miller-

Rabin primality test that  is indeed prime. Given the above  and , the curve equation is . While counting the points on elliptic

curves is complicated, you can verify with the point calculator above that  (the tool also recovers the -coordinate of  correctly).

Since , computing square roots modulo  is simple. Since  is prime and  is not the point at infinity, the order of  cannot be

smaller than . Since the cofactor is ,  generates all points on the elliptic curve. Since  is prime, every element except  is a generator.

And since  is odd, we know that the curve has no point with a -coordinate of .

Integer conversion

The following tools converts the given integer to the decimal and the hexadecimal numeral system in the preferred formatting:

Integer: 15

Decimal: 15

Hexadecimal: 0xF

DL algorithms
We now have two families of finite groups for which it is presumably difficult to determine how many times an element has been repeated if the

parameters of the group have been chosen carefully:

Multiplicative groups: Given a modulus , a generator , and an element , it’s hard to find the integer  so that .

Elliptic curves: Given an elliptic curve, a generator , and a point , it’s hard to find the integer  so that .

p F  p

a y =2 x +3 a ⋅ x + b

b y =2 x +3 a ⋅ x + b

G

n G n = ∣G∣ nG = O

h G

p

p = = 2 −256 2 −32 2 −9 2 −8 2 −7 2 −6 2 −4 1
2256

a = 0

b = 7

G =

n =

h = 1

p a b y =  

2
p x +3 7

nG = O y G

p % 4 = 3 p n G G

n 1 G n O

n y 0

   

m G K k G =  

k
m K

G K k kG = K

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Domain_parameters
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Domain_parameters
https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number
https://en.wikipedia.org/wiki/Backdoor_(computing)
https://en.wikipedia.org/wiki/Bitcoin
https://en.wikipedia.org/wiki/Ethereum
https://en.wikipedia.org/wiki/Cryptocurrency
https://en.bitcoin.it/wiki/Secp256k1
https://www.secg.org/sec2-v2.pdf
https://www.secg.org/
http://localhost:4000/internet/#number-encoding
https://www.iacr.org/archive/crypto2001/21390189.pdf
https://en.wikipedia.org/wiki/Neal_Koblitz
https://en.wikipedia.org/wiki/Hexadecimal
https://www.secg.org/sec2-v2.pdf
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Fast_reduction_(NIST_curves)
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Numeral_system


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2775 / 92

In both groups, this is known as the discrete-logarithm problem (DLP); in the latter case also as the elliptic-curve discrete-logarithm problem

(ECDLP). Since group operations are associative and repeating an element is fast, this gives us the linear one-way function we were aiming for. In

this chapter, we’ll study some of the best known algorithms for solving the discrete-logarithm problem. This allows us to understand why the

number of steps we need to solve a discrete-logarithm problem is in the order of the square root of the largest prime factor of the generator’s

order, and why it’s even less in the case of multiplicative groups. Before we do so, we’ll revisit how an element of a group can be repeated

efficiently. This gives you a better feeling for why one direction of the linear one-way function is so much easier than the other.

Repetition revisited
As explained earlier, repeating a generator   times takes just  steps, which corresponds to the bit-length of . The algorithm below uses

the fact that one can “rebuild” a binary number by doubling, thereby shifting the current binary digits (bits) one to the left, and by adding one,

thereby setting the least-significant bit to . Using subscripts to denote the  bits of  from right to left so that 

and , we can rebuild the positive integer  in the coefficient or exponent of  by combining the current result with itself and by

combining it with :

This algorithm is similar to the one I covered earlier, but this time we work explicitly with a binary representation of  and process its bits from the

left to the right instead of the other way around. The following tool implements this algorithm for multiplicative groups and elliptic curves. You

can change which group is being displayed in all the remaining tools by double-clicking on its tab.

Limitations of the above tool

The above tool shares its state with the other tools in this chapter. Since some algorithms for solving the discrete-logarithm problem work

only if the order of the generator is known, we have to determine it even in the tools that don’t need it. In order to determine the order of an

element, you have to know the prime factorization of the group’s order, which is itself not always easy to determine. Hence, the tools in this

chapter have the following limitations:

Multiplicative groups: In order to determine the order of a multiplicative group, we have to evaluate Euler’s totient function for its

modulus , which requires the prime factorization of . If  isn’t prime, the tools in this chapter perform up to 100’000 rounds of

Pollard’s rho factorization algorithm, which is usually enough to factorize the product of two 35-bit primes, i.e. numbers with up to 21

decimal digits. If successful, it performs at most another 100’000 rounds of the same algorithm to factorize the group’s order. If either of

Gk log  (k)2 k

1 l k k = (k  … k  )  =l−1 0 2  k  2∑i=0
l−1

i
i

k  =l−1 1 k G

G

function binaryRepeat(G, k) {
let K := G

for (i from l − 2 to 0) {

K := K2

if (k  =i 1) {

K := K ⋅ G

}
}
return K

}

k

k = 101010  (6 bits)

k G = K Action

1 G = 56

0 G = 32 square

1 G = 17 square and multiply

0 G = 95 square

1 G = 30 square and multiply

0 G = 27 square

Modulus m: 97 Next prime Previous prime

Generator G: 56 Random

G's order n: 96

Input k: 42 Random

   

2

i
k

m

1
m

2
m

5
m

10
m

21
m

42
m

m m m

Multiplicative Additive Both

Multiplicative group Elliptic curve Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Discrete_logarithm#Algorithms
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Bit-length
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Bit_numbering#Bit_significance_and_indexing
https://en.wikipedia.org/wiki/Subscript_and_superscript


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2776 / 92

these factorizations fail, you have to enter the order of  yourself, which gives you the option of choosing the modulus in a smart way. If

you just want to know the result of a modular exponentiation, you can use the calculator for rings above, which doesn’t have this

limitation.

Elliptic curves: Since I didn’t implement Schoof’s algorithm, the tool counts the number of points only for elliptic curves whose modulus 

is smaller than 100’000. Once the order of the group has been determined, it also performs up to 100’000 rounds of Pollard’s rho

factorization algorithm in order to determine the order of . If  > 100’000 or the factorization fails, you have to enter the order of 

yourself, which you can determine with SageMath as explained in the next box. If you just want to know the result of a point multiplication,

you can use the point calculator above, which doesn’t have this limitation.

How to use the playground of SageMath

SageMath is an open-source software library for mathematics. You can use its playground for many things, which includes computations on

elliptic curves over finite fields (see the documentation of cardinality, order, lift_x, and plot):

# Determine the order of the given curve:
EllipticCurve(Zmod(97), [1, 4]).cardinality()

# Determine the order of the given element:
EllipticCurve(Zmod(97), [1, 4]).lift_x(56).order()

# List all the points with the given x-coordinate:
EllipticCurve(Zmod(97), [1, 4]).lift_x(56, all=True)

# Plot the points of the discrete curve (only for small curves):
EllipticCurve(Zmod(97), [1, 4]).plot()

# Plot the elliptic curve with the given parameters over the real numbers:
EllipticCurve([1, 4]).plot()

Exhaustive search
The simplest algorithm for solving the discrete-logarithm problem is to simply try all possible values for . The effort for doing so scales

exponentially with the bit-length of . The search for the input  so that you get the output  can be visualized as follows:

Please note that the above graphic is linear only for the coefficient/exponent of . If you ordered the elements on the line according to their value

(such as the -coordinate in the case of elliptic curve points), the steps in blue would look completely chaotic (see the repetition tables of

multiplicative groups and elliptic curves for actual sequences). The following tool implements exhaustive search for multiplicative groups and

elliptic curves. The tool spends most of its time waiting so that you can actually see what’s happening. If you want the result as quickly as possible,

set the delay to 0, in which case the tool updates its output only every 1 million steps.

G

p

G p G

k

k k K

G G2 G3 G4 G5 G6 … Gk  = K I

· G

You simply count how many times you have to repeat the generator  to reach the output .G K

G

x

41 steps in 11.83 s

Problem: Find k so that G =  K

56 =  27

G  =  56  =  27

Modulus m: 97 Next prime Previous prime

Generator G: 56 Random

G's order n: 96

Output K: 27 Random

Delay: 0.20

Search    

k
m

k
97

c
m

42
97

Multiplicative Additive Both

Multiplicative group Elliptic curve Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/SageMath
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/SageMath
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Library_(computing)
https://sagecell.sagemath.org/
https://doc.sagemath.org/html/en/reference/index.html
https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/ell_finite_field.html
https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/ell_finite_field.html#sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field.cardinality
https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/ell_point.html#sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_finite_field.order
https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/ell_generic.html#sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic.lift_x
https://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html#sage.plot.plot.plot
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Bit-length


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2777 / 92

Output not in generated subgroup

The tools in this chapter don’t require that  generates the whole group. In the case of multiplicative groups, it can be desirable for  to

generate just a subgroup so that its order can be prime (as mentioned earlier) and that the size of cryptographic keys and signatures can be

smaller (as explained later). Moreover, some cryptosystems, such as RSA, use non-cyclic groups, which have no generators. If  doesn’t

generate the whole group, you can set the output  to an element which isn’t in the subgroup generated by . While subgroup membership

can be tested easily in cyclic groups, I didn’t implement this check because there is no simple formula to determine whether an elliptic curve

is cyclic and I had to handle failures anyway for non-cyclic groups.

Subgroup membership test in cyclic groups

Baby-step giant-step
Exhaustive search is very slow because it takes steps of size . If we take larger steps of size  by repeatedly multiplying the current element by 

instead of  (or by adding  instead of ), we jump over  if  is not a multiple of . Instead of checking after each step whether we have

reached , we can compute  neighbors of  and check whether we have reached one of them:

Since you make giant steps (in blue) after a series of baby steps (in green), this algorithm is known as baby-step giant-step. As you may want to

compute the discrete logarithm of several elements, you typically compute the neighbors of  instead of  and then take the giant steps

backwards from the current element  so that you can reuse the computed neighbors in later runs:

To look up whether you have reached one of the green elements in constant time, you store these elements with their index in a hash table. If you

have enough storage for  elements ( ), it takes  baby steps to compute them and at most  giant steps to reach one of them from 

. This is a massive improvement over exhaustive search, which takes in the order of  steps to find , assuming that  was chosen randomly

between  and . The following tool implements the baby-step giant-step algorithm, but it makes at most 99 baby steps for the sake of

visualization. If you’re just interested in the result, you can use the next algorithm.

k = 42

Clear

G G

G

K G

Given two elements  and  of a cyclic group, there exists an integer  so that  if and only if . Proof:

If , . According to Lagrange’s theorem,  divides . Therefore, .

If ,  divides . Now,  and  generate a subgroup of order . As proven earlier, a cyclic group has a single

subgroup of order . Thus, . Since , there exists an integer  so that .

G K k G =k K K = I

G =k K K ∈ ∣K∣ ∣G∣ K =∣G∣ I

K =∣G∣ I ∣K∣ ∣G∣ K G∣G∣/∣K∣ ∣K∣
∣K∣ ⟨K⟩ = ⟨G ⟩∣G∣/∣K∣ K ∈ ⟨G ⟩∣G∣/∣K∣ k G =k K

1 s Gs

G sG G K k − 1 s

K s − 1 K

G G2 G3 … Gs + 1 … Gk  = K KG … KGs − 1 I

· G
· Gs 

If the landing area consists of  elements, we can take steps of size  without missing it.s s

G K

K

G G2 … Gs … Gk  = K I

· G
/ Gs 

In the more common variant of the algorithm, you take the giant steps backwards instead of forwards.

 n n =  n  n

K n k k

0 n

Multiplicative Additive Both

∣G∣

⟨G⟩

Multiplicative Additive Both

Multiplicative Additive Both

∣G∣

Multiplicative group Elliptic curve Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Cryptosystem
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Baby-step_giant-step
https://en.wikipedia.org/wiki/Time_complexity#Constant_time
https://en.wikipedia.org/wiki/Hash_table


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2778 / 92

Pollard’s rho algorithm
In order to achieve an expected running time of  with baby-step giant-step, you need to store  elements, which requires an impossible

amount of memory for practical values of . For example, if  is a 256-bit number, you’d have to store 2  · 256 bits ≈ 10  bytes in the case of

elliptic curves, ignoring the overhead for the indexes and the data structure. For comparison, the global data storage capacity is around 10  bytes

in 2022. Pollard’s rho algorithm, which is named after John M. Pollard (born in 1941), achieves the same expected running time of  while

storing only 2 elements and 4 indexes by exploiting the birthday paradox.

Pollard’s rho algorithm uses the following, non-cryptographic “hash” function, which maps the integers  and  to an element :

Once we find a collision, i.e. inputs  and  where  so that , we can solve for  as follows:

If  is coprime with ’s order , it has a multiplicative inverse, and thus . As we’ll see in the next section, we

typically run Pollard’s rho algorithm only if  is prime, in which case  is guaranteed to be coprime with . If  is not coprime

with , there are several solutions for , and we have to test one after the other in order to find the discrete logarithm of . Depending on the

prime factorization of , there can be quite a lot of solutions to check, unfortunately (see below).

We can use insights from graph theory to find a collision. First, we define a sequence of elements  with the following function:

If  is in the subgroup generated by  and we start with the identity element as , all the elements  of the sequence are in the subgroup

generated by . Since we’re interested only in finite groups with finitely many elements, the sequence has to reach an element which was already

encountered earlier at some point. Since the next element of the sequence  depends only on the previous element , the sequence repeats

from there. Such a sequence thus forms the Greek letter ρ (rho) with a tail and a cycle:

14 steps in 6.23 s

Problem: Find k so that G =  K

56 =  27

The neighbors of G as our landing area:

K / G  =  27 / 56  =  32

k = c + i = 40 + 2 = 42

Clear

G  =  56 G  =  32 G  =  46 G  =  54 G  =  17 G  =  79 G  =  59 G  =  6 G  =  45 G  =  95

Modulus m: 97 Next prime Previous prime

Generator G: 56 Random

G's order n: 96

Output K: 27 Random

Delay: 0.20

Search    

k
m

k
97

1
m

2
m

3
m

4
m

5
m

6
m

7
m

8
m

9
m

10
m

c
m

40
97

 n  n

n n 128 40

22

 n

a b C

h(a, b) = G ⋅a K =b C

(a  , b  )1 1 (a  , b  )2 2 b  =  1 n b  2 h(a  , b  ) =1 1 h(a  , b  )2 2 k

G ⋅ Ka  1 b  1

K /Kb  1 b  2

(G )k b  −b  1 2

(b  − b  )k1 2

= G ⋅ Ka  2 b  2

= G /Ga  2 a  1

= Ga  −a  2 1

=  a  − a  n 2 1

b  −1 b  2 G n k =  n (a  −2 a  ) ⋅1 (b  −1 b  )2
−1

n b  −1 b  =  2 n 0 n b  −1 b  2

n k K

n

S  i

S  =i+1 f(S  ) =i    ⎩⎨
⎧S  ⋅ Gi

S  ⋅ Ki

S  ⋅ S  i i

if S  =  0,i 3

if S  =  1,i 3

if S  =  2.i 3

K G S  1 S  i

G

S  i+1 S  i

Multiplicative Additive Both

Multiplicative Additive Both

Multiplicative Additive Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Data_structure
https://www.statista.com/statistics/1185900/worldwide-datasphere-storage-capacity-installed-base/
https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm_for_logarithms
https://en.wikipedia.org/wiki/John_Pollard_(mathematician)
http://localhost:4000/email/#cryptographic-hash-functions
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Rho


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2779 / 92

S3 

S4 

S5 

S6 

S7 

S8 

S2 

S1 

The sequence repeats at .

In general, the tail can be empty, and the cycle can consist of a single element, which the function  maps to itself. Now, we can use Floyd’s cycle-

finding algorithm, named after Robert W. Floyd (1936 − 2001), to find two elements  and  in this sequence so that  and . The

algorithm moves two elements with different speeds along the sequence. Alluding to one of Aesop’s fables, these elements are usually called the

tortoise and the hare. They both start at , but whenever the tortoise makes one step, the hare makes two. As a consequence, the hare is ahead

until the tortoise enters the cycle as well. Since the hare cannot jump over the tortoise as the distance between them decreases by one in each

iteration, the hare catches up to the tortoise until they meet again:

… S4 S5 S6 S7 S8 …

If the hare (in red) is one element behind the tortoise (in orange),

they’ll be at the same element (in green) after the next iteration.

Once the tortoise and the hare meet again, we have the collision that we were looking for. In order to determine , though, we must represent

each element of the sequence as  for some integers  and . The sequence function  has been chosen such that it’s easy to keep track of 

and : After starting with  (or ) for some initial values of  and , you add  to  if , add  to  if 

, and double both  and  if . Using the subscript  to denote the values of the tortoise and the subcript  to denote the values of

the hare, it’s very unlikely that  because the hare travelled further than the tortoise. In the rare case that , you can start over

with different initial values for  and . I implemented this only for the Pohlig-Hellman algorithm in the next section. In order to have a

deterministic outcome, the tool below sets  and  to  initially.

The following tool implements Pollard’s rho algorithm. It visualizes the chase of the tortoise and the hare if ’s order  and there is a delay.

Since (without the visualization) you have to store only the current element  with the corresponding integers  and  for both the tortoise 

and the hare , the algorithm requires only a very small and fixed amount of memory. As we’ll see in the second box, it takes on average only

around  iterations until . Therefore, Pollard’s rho algorithm has the same expected running time as baby-step giant-step and is usually

preferable to the latter due to its minimal memory consumption.

S  =9 S  3

f

S  u S  v S  =u S  v u = v

S  1

k

h(a, b) a b f a

b S  =1 h(a, b) = G ⋅a Kb S  =1 aG + bK a b 1 a S  =  i 3 0 1 b

S  =  i 3 1 a b S  =  i 3 2 1 2
b  =  1 n b  2 b  =  1 n b  2

a b

a b 0

G n ≤ 400
C a b □  1

□  2

 n C  =1 C  2

25 steps in 8.43 s

Problem: Find k so that G =  K

56 =  27

G's order n: 96 = 2  · 3

sqrt(96) ≈ 9

The sequence of elements:

S  = 1

S  = 27

S  = 57

S  = 88

S  = 48

S  = 69

S  = 81

Modulus m: 97 Next prime Previous prime

Generator G: 56 Random

G's order n: 96

Output K: 27 Random

Delay: 0.20

Search    

k
m

k
97

5

1 m

2 m

3 m

4 m

5 m

6 m

7 m

Multiplicative group Elliptic curve Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Cycle_detection#Floyd.27s_Tortoise_and_Hare
https://en.wikipedia.org/wiki/Robert_W._Floyd
https://en.wikipedia.org/wiki/The_Tortoise_and_the_Hare
https://en.wikipedia.org/wiki/Tortoise
https://en.wikipedia.org/wiki/Hare
https://en.wikipedia.org/wiki/Subscript_and_superscript


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2780 / 92

Solving modular equations

How can we solve an equation of the form  for ? If  has a multiplicative inverse modulo , . If  has no

multiplicative inverse,  has  solutions in  if  is a multiple of  and no solution otherwise as we saw earlier. Using

the extended Euclidean algorithm, we can find integers  and  so that . After multiplying both sides by , we get 

. Modulo , we have , which means that  is a solution to . Since the 

solutions are equally apart, we get the other  solutions by adding multiples of the offset  to . The following tool does all of

that for you:

S  = 74

S  = 44

S  = 93

S  = 67

S  = 63

S  = 36

S  = 76

S  = 15

S  = 64

S  = 79

S  = 96

S  = 41

S  = 32

S  = 54

S  = 17

S  = 95

The start of the cycle: S  = 4

S  = 11

S  = 24 =  56  · 27  =  56  · 27

S  = 83

S  = 2

C  =  G  · K =  56  · 27  =  24

C  =  G  · K =  56  · 27  =  24

(b  − b ) · k =  a  − a

(2 − 18) · k =  40 − 40

80 · k =  0

k ∈ {0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90}

56 =  1

56 =  79

56 =  33

56 =  85

56 =  22

56 =  89

56 =  47

56 =  27

56 =  96

56 =  18

56 =  64

56 =  12

56 =  75

56 =  8

56 =  50

56 =  70

k = 42

Clear

8 m

9 m

10 m

11 m

12 m

13 m

14 m

15 m

16 m

17 m

18 m

19 m

20 m

21 m

22 m

23 m

24 m

25 m

26 m 97
40 2

97
40 18

27 m

28 m

1 m
a1 b1 m

40 2
97

2 m
a2 b2 m

40 18
97

1 2 n 2 1

96

96

0
97

6
97

12
97

18
97

24
97

30
97

36
97

42
97

48
97

54
97

60
97

66
97

72
97

78
97

84
97

90
97

a ⋅ x =  m c x a m x =  m c ⋅ a−1 a

a ⋅ x =  m c d = (a,m) Z  m c d

b n d = a ⋅ b + m ⋅ n c/d c = a ⋅
(b ⋅ c/d) + m ⋅ (n ⋅ c/d) m a ⋅ (b ⋅ c/d) =  m c x =  m b ⋅ c/d a ⋅ x =  m c d

d − 1 o = m/d x

Integer a: 9 Modulus m: 15

gcd

https://ef1p.com/number-theory/


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2781 / 92

d = gcd(a, m) = b · a + n · m

d = gcd(9, 15) = 2 · 9 + (−1) · 15 = 3

a · x =  c

9 · x =  12

x =  b · c / d

x =  2 · 12 / 3 =  8

o = m / d

o = 15 / 3 = 5

x ∈ {3, 8, 13}

Birthday paradox

The birthday paradox denotes the counterintuitive fact that in a group of 23 people, it’s likelier than not that at least two of them have the

same birthday. Since we’re not interested in birthdays, we analyze this problem more generally: When we put  items randomly into 

buckets, how likely is it that at least one bucket contains at least two items? If , the probability of this happening is  according to the

pigeonhole principle. If , we first analyze the probability  that this is not happening, i.e. the probability that all buckets contain at

most one item. The probability that the first item lands in an empty bucket is . For the second item,  of the  buckets are still empty.

The probability of landing in one of those is . Thus:

The probability that at least one bucket contains at least two items is then . Applied to the birthday paradox, we have 

. So how is this related to Pollard’s rho algorithm? If the function  gives us a

random element in the subgroup generated by  of order ,  describes how likely it is that  returned at least one element twice after

 invocations. Unlike the birthday paradox, we’re not interested in the median but rather in the expected number of iterations  until we

obtain an element twice. The expected value of a random variable is determined as the sum of each possible outcome multiplied by the

probability of this outcome. The first possible outcome is that we get a repetition in the second iteration. The probability that we get the

element from the first iteration again in the second iteration is . The probability that we get the first repetition in the third iteration is the

probability that we don’t get a repetition in the second iteration ( ) times the probability that we get one of the first two elements in the

third iteration ( ). The probability that we sample  different elements and get the repetition only in the th iteration is .

Thus:

This formula determines the colored area of the following outcome × probability table by adding up the area of each column:

1

2

3

4

5

6

0 1Probability

n = 5

It
er

at
io

n
s

The green area indicates the iteration in which the first repetition occurs.

The width of each column indicates how likely the particular outcome is.

As just explained, the width of each column is determined by .

Integer c: 12    

m

15

m

m 15

i n

i > n 1
i ≤ n (i,n)P

1 n − 1 n

 

n
n−1

(i,n) =P  ⋅
n

n
 ⋅

n

n − 1
 ⋅

n

n − 2
… ⋅  =

n

n − i + 1
 =

ni
n ⋅ (n − 1) ⋅ (n − 2) ⋅ … ⋅ (n − i + 1)

 

n (n − i)!i

n

P (i,n) = 1 − (i,n)P

P (23, 365) = 1 − 365!/(365 (365 −23 23)!) = f(S  )i
G n P (i,n) f

i E(n)

 

n
1

 

n
n−1

 

n
2 n (n + 1)  =

nn−1
(n−1)!

 

nn
n!

  

E(n) = 2 ⋅  + 3 ⋅  ⋅  + 4 ⋅  ⋅  ⋅  + … + (n + 1) ⋅  

n

1
n

n − 1
n

2
n

n − 1
n

n − 2
n

3
nn
n!

=   =   ⋅  

i=2

∑
n+1

(n − i + 1)! ⋅ ni−1

i ⋅ (n − 1)! ⋅ (i − 1)

i=2

∑
n+1

n − i + 1
i ⋅ (i − 1)

(n − i)! ⋅ ni
n!

 (n−i+1)!ni
n!(i−1)

!

0.5073

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Pigeonhole_principle
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Factorial
https://www.wolframalpha.com/input?i=1-365%21%2F%28365%5E23*%28365-23%29%21%29


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2782 / 92

We can simplify  by summing over the rows instead of the columns. After the first iteration, the probability that we need at least one

more iteration is . After the second iteration, the probability that we didn’t get a repetition and thus need more iterations is . After the

third iteration, we have to multiply this probability times the probability that the third element wasn’t one of the first two: . This

gives us the following formula  for the blue area in the above graphic:

By adding  for the green area, we have . To approximate the value of , we need another formula :

For sufficiently large ,  because the difference between  and  gets smaller and smaller as  gets larger, and the

addends from  to  get vanishingly small as they are the product of lots of numbers smaller than . Using the Taylor series, named

after Brook Taylor (1685 − 1731), of the exponential function (i.e. ) and Stirling’s formula, named after James Stirling (1692 −

1770), to approximate factorials (i.e. ), we get:

Therefore,  since , which means that it takes in the order of  iterations until you get a

repetition when randomly sampling from  elements. The functions  and  were introduced for this analysis by Donald Ervin Knuth

(born in 1938) in section 1.2.11.3 in the first volume of his book The Art of Computer Programming.

While the function  used by Pollard’s rho algorithm isn’t random, it is random enough for  to be a really good estimate for how many

steps are needed. In order to make it easier for you to judge this, the tool above displays the number of steps that it took to find a repetition

at the top and the square root (sqrt) of ’s order  below the problem statement. The above graphic depicting  showed only the elements in

the sequence defined by the starting element and . However,  maps any of the  elements to a somewhat random other element.

No matter where you start, you get a first repetition and thus a cycle after around  steps on average. The complete picture looks like

this:

S3 

S4 

S5 

S6 

S7 

S8 

S2 

S1 

The  elements are depicted as circles and the mappings defined by  as arrows.

Pollard’s rho factorization algorithm

We can apply the same idea to integer factorization. Confusingly, this algorithm is also called Pollard’s rho algorithm. Given a composite

number  and a divisor  of , we can use the function  to define a sequence of integers , where . Since we

compute  modulo , this function evaluates to at most  different values. If the sequence generated by  is random enough, it revisits

an already visited integer after around  iterations on average as we saw in the previous box. We can use Floyd’s cycle-finding algorithm to

find two integers  and  so that . If  is a multiple of , then so is  because  is a factor of . Now the problem is

that we don’t know , otherwise we would have already found a factorization of . Instead of computing  modulo  and checking

whether , we can compute  modulo  and check whether . Since we don’t have to reduce  modulo any

integer and the former condition still implies the latter, the latter algorithm takes at most as many iterations of Floyd’s cycle-finding

algorithm as the former. If  and ,  is a non-trivial divisor of . Since this algorithm no longer

depends on  and the above reasoning applies to all divisors of , the number of iterations it takes to find a factor of  is expected to be

around the square root of the smallest prime factor of . We can implement Pollard’s rho algorithm in pseudocode as follows:

E(n)
1  

n
n−1

 ⋅
n

n−1
 

n
n−2

Q(n)

Q(n) = 1 +  +
n

n − 1
 ⋅

n

n − 1
 +

n

n − 2
… =   =

i=1

∑
n

(n − i)! ⋅ ni
n!

 ⋅
nn
n!

  

i=1

∑
n

(n − i)!
nn−i

1 E(n) = 1 + Q(n) Q(n) R(n)

R(n) = 1 +  +
n + 1
n

⋅
n + 1
n

 +
n + 2
n

… =   =
i=0

∑
∞

(n + i)!
n! ⋅ ni

 ⋅
nn
n!

  

i=0

∑
∞

(n + i)!
nn+i

n Q(n) ≈ R(n)  

n
n−1

 

n+1
n n

i = n + 1 ∞ 1
e =n

  ∑i=0
∞

i!
ni

n! ≈   2πn en
nn

Q(n) + R(n) =  ⋅
nn
n! (   +

i=1

∑
n

(n − i)!
nn−i

  ) =
i=0

∑
∞

(n + i)!
nn+i

 ⋅
nn
n! (   ) =

i=0

∑
∞

i!
ni

 ⋅
nn
n!

e ≈n
 2πn

Q(n) ≈   =2
1 2πn  ≈ n2

π 1.25  n  =2
1

  4
1

 n

n Q(n) R(n)

f(S  )i  n

G n ρ

f(S  )i f(S  )i n

1.25  n

n f(S  )i

n d n f(x) =  d x +2 1 s  i s  =i+1 f(s  )i
f(x) d d f(x)

 d

a b a =  d b a − b d (n, ∣a − b∣) d n

d n f(x) d

a =  d b x +2 1 n gcd(n, ∣a − b∣) > 1 f(x)

gcd(n, ∣a − b∣) > 1 a =  n b gcd(n, ∣a − b∣) n

d n n

n

let o := 1

function f(x,n) {

gcd

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Brook_Taylor
https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://en.wikipedia.org/wiki/James_Stirling_(mathematician)
https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Birthday_problem#Average_number_of_people_to_get_at_least_one_shared_birthday
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
https://en.wikipedia.org/wiki/Cycle_detection#Floyd.27s_Tortoise_and_Hare
https://en.wikipedia.org/wiki/Divisor#General
https://en.wikipedia.org/wiki/Pseudocode


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2783 / 92

Usually, this algorithm finds the smallest prime factors of  first, but the returned  can be any divisor of  and doesn’t have to be prime. If

you want to find the prime factorization of , you recursively factorize  and  until all factors are prime, which you can test efficiently with a

probabilistic primality test, such as the Miller-Rabin primality test. If , , and the algorithm fails. In this case, you

can increment the offset  in the function  and try again. If the input , neither incrementing  nor starting from a different value

makes the algorithm succeed. For this reason, it’s common to halve the input  until it is odd and then to run Pollard’s rho factorization

algorithm from there.

Pollard’s rho factorization algorithm can be optimized in the following two ways:

Use Brent’s cycle-finding algorithm, named after Richard Peirce Brent (born in 1946): Instead of moving both the tortoise and the hare

along the sequence in each iteration, you move only the hare one step ahead, replacing three evaluations of  with one. After every

power of  steps, you set the tortoise to the current value of the hare. The tortoise then acts as a waypoint so that it can stop the hare

when it passes by. While Brent’s cycle-finding algorithm evaluates  as often as Floyd’s one does in the worst case, Brent showed that

his algorithm requires 36% fewer evaluations of  on average.

Combine several differences before running the Euclidean algorithm: Instead of computing the greatest common divisor in every

iteration, you compute the product of the differences  modulo  over several iterations and run the Euclidean algorithm only once

in a while. This works because if , then  for any integers  and .

The following tool implements Pollard’s rho factorization algorithm. Unlike my implementation of trial division above, it checks whether the

remaining factor is prime. Its running time is thus in the order of the square root of the second largest prime factor if the exponent of the

largest prime factor is . (It’s possible to test for perfect powers efficiently as explained in the note 3.6 in the Handbook of Applied

Cryptography and on Wikipedia; I just didn’t implement this because you rarely encounter them.)

Integer: 231 Totients: Delay: 0.20 Factorize

4 steps in 4.79 s

231 = 3 · 7 · 11

Input Greatest common divisor Steps Sqrt +

231 gcd(231, |5 − 26|) = 21 1 4 1

21 gcd(21, |17 − 11|) = 3 3 2 2

3 is prime

7 is prime

11 is prime

Clear

Pohlig-Hellman algorithm

return (x +2 o)   n

}

function factorize(n) {

let a := 2
let b := 2

let d := 1
while (d = 1) {

a := f(a,n)

b := f(f(b,n),n)
d := gcd(n, ∣a − b∣)

}
if (d = n) {

return “failure”
} else {

return d

}
}

n d n

n d  

d
n

a =  n b gcd(n, ∣a − b∣) = n

o f(x) n = 4 o

n

f(x)
2

f(x)
f(x)

∣a − b∣ n

gcd(n,x) > 1 gcd(n,x ⋅ y) > 1 x y

1

   

%

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Cycle_detection#Brent.27s_algorithm
https://en.wikipedia.org/wiki/Richard_P._Brent
https://maths-people.anu.edu.au/~brent/pd/rpb051i.pdf
https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm#Variants
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Perfect_power
https://cacr.uwaterloo.ca/hac/about/chap3.pdf
https://en.wikipedia.org/wiki/Perfect_power#Detecting_perfect_powers


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2784 / 92

The Pohlig-Hellman algorithm, which is named after Stephen Pohlig (1953 − 2017) and Martin Edward Hellman (born in 1945), reduces the

discrete-logarithm problem in a large group of non-prime order to several discrete-logarithm problems in smaller groups, which are easier to

solve since the running time of the above DL algorithms depend only on the size of the group. Given a generator , its order , and an output  of

the linear one-way function, the Pohlig-Hellman algorithm finds the input  as follows:

The above algorithm shows that the difficulty of computing discrete logarithms is determined by the size of the largest prime factor  of the

group’s order , ignoring even its exponent . This means that if the multiplicative group or the elliptic curve isn’t chosen carefully, it can be

relatively easy to invert the linear one-way function. For example, the tool below computes discrete logarithms modulo the 107-digit/354-bit

prime 22’708’823’198’678’103’974’314’518’195’029’102’158’525’052’496’759’285’596’453’269’189’798’311’427’475’159’776’411’276’642’

277’139’650’833’937 in a matter of seconds because the largest prime factor of this prime minus one is just 350’377. (I took this example from

the note 3.66 in the Handbook of Applied Cryptography.) On the other hand, if you choose a safe prime as the modulus of a multiplicative group,

the Pohlig-Hellman algorithm reduces the difficulty of the group’s discrete-logarithm problem only by a single bit. In the case of elliptic curves, it

makes sense to choose the parameters such that the group contains a prime number of points to begin with.

The following tool implements the Pohlig-Hellman algorithm. Since Pollard’s rho algorithm has a decent chance of total failure in small groups, the

tool uses exhaustive search to find the discrete logarithm in groups smaller than 100 and Pollard’s rho algorithm with a randomly chosen starting

element in the case of failure otherwise. Unlike the other DL algorithms, you cannot configure a delay because the only aspects worth animating

G n K

k

1. Find the prime factorization of  so that  for distinct primes  and integers . Since the Pohlig-Hellman

decomposition succeeds only if all the prime factors are sufficiently small, Pollard’s rho factorization algorithm is a good choice for this

step. If the factorization fails because some factors are too large, the steps below wouldn’t work either.

2. For  from  to , do the following:

1. Compute . Since the order of  is , the order of  is .

2. Compute . Since , we have that , which means that the discrete logarithm of 

 to the base  is also a discrete logarithm of  to the base . As we saw earlier, a discrete logarithm is unique only up to the order

of its base. Therefore, the discrete logarithm of  to the base , which I denote as , is not necessarily a discrete logarithm of  to

the base  as , whereas . A discrete logarithm is unique up to the order of its base, though,

which implies that .

Instead of determining  so that  in the original group of order , we can thus determine  so that  in the subgroup

generated by  of order , which improves the expected running time from  to  when using Pollard’s rho algorithm for this.

Depending on the prime factorization of , this can already be a big improvement. The following insight allows us to determine  in

the steps 2.3 to 2.5 below without ever having to compute a discrete logarithm in a group larger than , which improves the expected

running time even further to . If you’re not interested in this, you can continue with the step 3 at the bottom of this box.

Insight: We can write  in base  as , where each digit 

. Now, . When we raise both sides to the power of , we get 

 because all the other factors vanish as  due to Lagrange’s

theorem. Once we have determined  as the discrete logarithm of  to the base  of order  with one of the above DL

algorithms, we can take  to the other side of the equation in red: . When we raise both sides to

the power of , we get  because all the other factors vanish again. After determining 

in the same group of order  as before, we move  also to the other side of the equation, which gives us 

. By continuing like this, we can determine all the digits  of  without ever having to solve a discrete-

logarithm problem in a group larger than . We implement this as follows:

3. Compute . Since the order of  is , the order of  is . I colored the term  in the explanation above so that it’s

easier for you to see that each digit  is determined in the group generated by .

4. For  from  to , do the following:

1. If , set . Otherwise, set .  is the sum of all the digits that we have found so far, where each

digit is multiplied by the value of its position. I colored this partial sum in the explanation above so that it’s easier for you to see

where it’s being used.

2. Compute . I also colored the occurrences of this expression in the explanation above.

3. Find  so that  with one of the above DL algorithms.

5. Compute . (Alternatively, set .)

3. Use the Chinese remainder theorem to solve the system of congruences  efficiently.

4. Return  as the solution to .

n n = p  ⋅1
e  1 … ⋅ p  l

e  l p  i e  ≥i 1

i 1 l

G  :=i Gn/p  i

e  i

G n G  i p  i
e  i

K  :=i Kn/p  i

e  i

G =k K K  =i (G ) =k n/p  i

e  i

(G ) =n/p  i

e  i k G  i
k

K G K  i G  i

K  i G  i k  i K

G k  ∈i {0, … , p  −i
e  i 1} k ∈ {0, … ,n − 1}

k =  p  i

e  i k  i

k G =k K n k  i G  =i
k  i K  i

G  i p  i
e  i

 n  p  i
e  i

n k  i

p  i

 p  i

k  i p  i k  =i d  +0 d  p  +1 i d  p  +2 i
2 … + d  p  =e  −1i i

e  −1i
 d  p  ∑j=0

e  −1i
j i

j d  ∈j {0, … , p  −i

1} G  =i
k  i G  =i

d  +d  p  +…+d  p  0 1 i e  −1i i

e  −1i

G  ⋅ G  ⋅ … ⋅ G  = K  i
d  0

i
d  p  1 i

i

d  p  e  −1i i

e  −1i

i p  i
e  −1i

(G  ) =i
d  0 p  i

e  −1i

(G  ) =i

p  i

e −1i
d  0 K  i

p  i

e  −1i

(G  ) =i
d  p  j i

1+?
p  i

e  −1i

(G  ) =i

p  i

e  +?i
d  j I =d  j I

d  0 K  i

p  i
e −1i

G  i

p  i
e  −1i

p  i

G  i
d  0 G  ⋅i

d  p  1 i … ⋅ G  =i

d  p  e  −1i i

e  −1i

K  /G  i i
d  0

p  i
e  −2i (G  ) =i

d  p  1 i p  i

e  −2i

(G ) =i

p  i

e  −1i
d  1 (K  /G  )i i

d  0 p  i

e  −2i

d  1

p  i G  i
d  p  1 i G ⋅i

d  p  2 i
2

… ⋅ G  =i

d  p  e  −1i i

e  −1i

K  /G  /G  =i i
d  0

i
d  p  1 i K  /G  i i

d  +d  p  0 1 i d  j k  i

p  i

H  :=i G  i

p  i

e  −1i

G  i p  i
e  i H  i p  i G  i

p  i

e  −1i

d  j H  i

j 0 e  −i 1
j = 0 s  :=j 0 s :=j s  + d  ⋅ p  j−1 j−1 i

j−1
s  j

D  :=j (K  /G  )i i
s  j p  i

e  −1−ji

d  j H  =i
d  j

D  j

k  :=i d  +0 d  p  +1 i d  p  +2 i
2 … + d  p  =e  −1i i

e  −1i
 d  p  ∑j=0

e  −1i
j i

j
k  :=i s  +e  −1i d  p  e  −1i i

e  −1i

k =  p  i

e  i k  i

k G =k K

p  l

n e  l

Multiplicative Additive Both

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Pohlig%E2%80%93Hellman_algorithm
https://en.wikipedia.org/wiki/Stephen_Pohlig
https://en.wikipedia.org/wiki/Martin_Hellman
https://en.wikipedia.org/wiki/Time_complexity
https://cacr.uwaterloo.ca/hac/about/chap3.pdf
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Positional_notation


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2785 / 92

are the sub-algorithms that we’ve already covered. This tool simply links to the corresponding tool with the current values so that you can inspect

the steps of the sub-algorithm there.

Potential for backdoors in multiplicative groups

Before you rely on a multiplicative group which was provided by someone else to be a linear one-way function, you have to verify that the

group’s order has a sufficiently large prime factor. If the group’s order or its prime factorization is not known to you (because they aren’t

provided to you or you can’t determine them), you shouldn’t use the group. Otherwise, an attacker can choose the modulus  as the product

of two large primes  and , where both  and  have only relatively small prime factors. Since it’s difficult to factorize such a

0 steps in 3.83 s

Problem: Find k so that G =  K

56 =  27

G's order n: 96 = 2  · 3 ↗

1. Subproblem: Find k  so that G  =  K , where

p = 2

e = 5

K =  K  =  89

G =  G  =  46

H =  G  =  96

j s  = s  + d  · p D  =  (K  / G ) d  so that H  =  D Steps

0 0 1 0 0

1 0 96 1 0 ↗

2 2 1 0 0

3 2 96 1 0 ↗

4 10 1 0 0

k  = 0 · 2  + 1 · 2  + 0 · 2  + 1 · 2  + 0 · 2  = 10

2. Subproblem: Find k  so that G  =  K , where

p = 3

e = 1

K =  K  =  1

G =  G  =  35

H =  G  =  35

j s  = s  + d  · p D  =  (K  / G ) d  so that H  =  D Steps

0 0 1 0 0

k  = 0 · 3  = 0

Problem: k =  k  =  10

k =  k  =  0

Solution: k =  42 ↗

Clear

Modulus m: 97 Next prime Previous prime

Generator G: 56 Random

G's order n: 96

Output K: 27 Random

Search    

k
m

k
97

5

1 1
k1 m 1

1

1

1 m
n / p1

e1

97

1 m
n / p1

e1

97

1 m 1
p1

e  − 11

97

j j − 1 j − 1 1
j − 1

j m 1 1
sj p1

e  − 1 − j1

j 1
dj m j

1
0 1 2 3 4

2 2
k2 m 2

2

2

2 m
n / p2

e2

97

2 m
n / p2

e2

97

2 m 2
p2

e  − 12

97

j j − 1 j − 1 2
j − 1

j m 2 2
sj p2

e  − 1 − j2

j 2
dj m j

2
0

p1
e1 1 32

p2
e2 2 3

96

m

p q p − 1 q − 1

Multiplicative group Elliptic curve Both

https://ef1p.com/number-theory/


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2786 / 92

modulus , only the attacker can determine the group’s order  and use the Pohlig-Hellman algorithm to compute

discrete logarithms in this group. In order to avoid such a backdoor, you must insist that the other party shares the group’s order and its

prime factorization with you.

Index-calculus algorithm
The index-calculus algorithm computes discrete logarithms in multiplicative groups much faster than Pollard’s rho algorithm. It exploits the

circumstance that sufficiently many integers are sufficiently smooth, i.e. their prime factorization contains no factors larger than some integer .

Let , …,  denote all the prime numbers smaller than . An -smooth number  can then be written as , where  if 

is not a prime factor of  for each . If we assume for now that the modulus  is prime and greater than , and that  generates the

whole group , there exists an integer  for each  so that . To determine these integers, we repeatedly choose a random integer 

, where , until  is -smooth:

After taking the logarithm to base  on both ends, we get  in the repetition ring of . If we find enough such

equations, we can solve the following system of linear equations using Gaussian elimination, named after Carl Friedrich Gauss (1777 − 1855). (I’ll

explain matrix multiplication and Gaussian elimination in the article about coding theory.)

Since not all rows are linearly independent from one another and not all elements are invertible in the ring of integers modulo , we usually need

more than just  equations to solve for the integers  to . Once we have found these values, we increment a counter  starting from  until 

 is -smooth. Remember: We want to find an integer  so that . Given 

 for some new exponents  to , we can determine  as follows:

If you want to compute several discrete logarithms in the same group, you have to determine the integers  to  only once, which makes the

index-calculus algorithm even faster. (The discrete logarithm of  with respect to  is also called the index of  with respect to , hence the

name index calculus.) The algorithm doesn’t work for elliptic curves because points cannot be factorized. The running time of the index-calculus

algorithm is , which is subexponential and superpolynomial.

The following tool implements the index-calculus algorithm. In order to make its output reproducible, the tool increments  starting from  in its

search for smooth group elements instead of choosing  randomly. It continues the search until the matrix of exponents becomes invertible

modulo . As long as you disable the delay, it handles 50-bit moduli just fine. For example, it takes only around 7’800’000 steps to compute

discrete logarithms modulo the safe prime 627’789’652’071’083. In order to share its inputs with the DL algorithms above, the tool doesn’t allow

you to configure the number of prime bases yourself. It chooses .

m (m) = (p − 1) ⋅ (q − 1)

S

P  1 P  l S S A A = P  ⋅1
e  1 … ⋅ P  

l
e  l e  =i 0 P  i

A i ∈ {1, … , l} m S G

Z  m
× p  i P  i G =  

p  i
m P  i

r ∈ {1, …n} n = G =  

r
m R S

G =  

r
m R = P  ⋅1

e  1 … ⋅ P  =  l
e  l

m (G ) ⋅p  1 e  1 … ⋅ (G ) =p  1 e  l Ge  ⋅p  +…+e  ⋅p  1 1 l l

G r =  n e  ⋅1 p  +1 … + e  ⋅l p  l G

  ⟺

e  ⋅ p  + … + e  ⋅ p  1,1 1 1,l l

⋮

e  ⋅ p  + … + e  ⋅ p  l,1 1 l,l l

=  r  n 1

=  ⋮n

=  r  n l

     ⋅

e  1,1

⋮
e  l,1

⋯

⋯

e  1,l

⋮
e  l,l

   =  

p  1

⋮
p  l

n    

r  1

⋮
r  l

n

l p  1 p  l c 0 K ⋅
G =  

c
m T S k G =  

k
m K K ⋅ G =  

c
m T = P  ⋅1

e  1 … ⋅ P  =  

l
e  l

m (G ) ⋅p  1 e  1 … ⋅
(G ) =p  1 e  l Ge  ⋅p  +…+e  ⋅p  1 1 l l e  1 e  l k

k + c

k

=  e  ⋅ p  + … + e  ⋅ p  n 1 1 l l

=  e  ⋅ p  + … + e  ⋅ p  − cn 1 1 l l

p  1 p  l

P  i G P  i G

e(  + (1))  2 log  (m)⋅log  (log  (m))e e e

r 1
r

n

l = min(log  (n), 50)e

12 steps in 6.23 s

Problem: Find k so that G =  K

56 =  27

Modulus m: 97 is prime

G's order n: 96 = 2  · 3

5 prime bases: 2, 3, 5, 7, 11

6 equations:

56 = 56 = 2  · 7

56 = 32 = 2

56 = 54 = 2  · 3

56 = 6 = 2  · 3

Modulus m: 97 Next prime Previous prime

Generator G: 56 Random

G's order n: 96

Output K: 27 Random

Delay: 0.20

Search    

k
m

k
97

5

1
97

3 1

2
97

5

4
97

1 3

8
97

1 1

φ

∣G∣

o

Multiplicative group

https://ef1p.com/number-theory/
https://crypto.stackexchange.com/a/39268/76600
https://en.wikipedia.org/wiki/Index_calculus_algorithm
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Base_(exponentiation)
https://en.wikipedia.org/wiki/System_of_linear_equations
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Linear_independence
https://en.wikipedia.org/wiki/Calculus_(disambiguation)
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Index_calculus_algorithm#Complexity
https://en.wikipedia.org/wiki/Time_complexity#Sub-exponential_time
https://en.wikipedia.org/wiki/Time_complexity#Superpolynomial_time
https://en.wikipedia.org/wiki/Reproducibility
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Big_O_notation#Family_of_Bachmann%E2%80%93Landau_notations


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2787 / 92

Index calculus in subgroups

What if  generates only a proper subgroup of ? Since the running time of the index-calculus algorithm depends on the modulus  rather

than ’s order , Pollard’s rho algorithm is faster than the index-calculus algorithm when  is small enough. If  has many small factors, the

Pohlig-Hellman algorithm is even faster, of course. (Since the index-calculus algorithm is not the best choice for relatively small subgroups, it

usually doesn’t make sense to use it as the DL algorithm in the Pohlig-Hellman algorithm.) If  is neither small nor smooth, you can solve the

discrete-logarithm problem  as follows according to section 3.6.6 of the Handbook of Applied Cryptography (I don’t divide  and 

by the cofactor of the subgroup for simplicity):

1. Find an element , which generates the whole group. (We still assume that  is prime, and thus .)

2. Use the index-calculus algorithm to find an integer  so that .

3. Use the index-calculus algorithm to find an integer  so that .

4. Return .

This works because  implies that . Since  divides , we have that  is also a multiple of , and thus 

. Since  is unique up to a multiple of ,  has to be invertible modulo . Therefore, .

Interestingly, the above tool succeeds even if one of the bases  is not in the subgroup generated by . For example, it solves discrete

logarithms in the subgroup of order 32 modulo 96 just fine. I have no idea why the index-calculus algorithm still works in this case, and I

haven’t found any information about this phenomenon. If you know the answer, please let me know.

Index calculus with composite moduli

If the modulus  is composite, the above tool fails to invert the matrix of exponents. I understand that the prime factors of ’s order 

determine which exponents have a multiplicative inverse modulo , which is why the above tool displays the prime factorization of .

However,  can have many small factors no matter whether  is composite or prime. If you find a composite modulus for which the tool

succeeds for a subgroup larger than four, or if you know why this isn’t possible, please let me know.

Bits of security
As we learned in this chapter, it takes only around  steps to compute discrete logarithms in groups of prime order  due to Pollard’s rho

algorithm. If the order  is composite, the Pohlig-Hellman algorithm reduces the difficulty of computing discrete logarithms to the square root of

the largest prime factor of . In the case of multiplicative groups, it takes even fewer steps due to the index-calculus algorithm. The bit-length of

the expected number of steps required to break a cryptographic primitive defines its security level. When we say that a primitive has  bits of

security, it takes on average around  steps to break it. Given the current state of computers, cryptographic primitives become computationally

intractable at around 100 bits of security. In order to ensure that our linear one-way functions are indeed one-way functions, we have to choose

sufficiently large parameters as follows:

56 = 45 = 3  · 5

56 = 33 = 3  · 11

3 0 0 1 0

5 0 0 0 0

1 3 0 0 0

1 1 0 0 0

0 2 1 0 0

0 1 0 0 1

·

58

46

13

19

62

=

1

2

4

8

9

12

56 =  2

56 =  3

56 =  5

56 =  7

56 =  11

K · G  =  27 · 56  =  27 = 3

k =  3 · 46 − 0 =  42 ✓

Clear

9
97

2 1

12
97

1 1

96

58
97

46
97

13
97

19
97

62
97

c
m

0
97

3

96 96

G Z  m
× m

G n n n

n

G =  

k
m K h g

H ∈ Z  m
× m ∣Z  ∣ =m

× m − 1

g H =  

g
m G

h H =  

h
m K

k :=  n h ⋅ g−1

(H ) =g k
m Hh g ⋅ k =  m−1 h n m − 1 g ⋅ k − h n

g ⋅ k =  n h k n g n k =  n h ⋅ g−1

P  i G

m G n

n n

n m

 n n

n

n

s

2s

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Time_complexity
https://cacr.uwaterloo.ca/hac/about/chap3.pdf
mailto:contact@ef1p.com
mailto:contact@ef1p.com
https://en.wikipedia.org/wiki/Bit-length
https://en.wikipedia.org/wiki/Cryptographic_primitive
https://en.wikipedia.org/wiki/Security_level
https://en.wikipedia.org/wiki/Computational_complexity_theory#Intractability
https://en.wikipedia.org/wiki/Discrete_logarithm_records
https://en.wikipedia.org/wiki/One-way_function


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2788 / 92

Bits of security

Elliptic curves: 

length of G's order n in bits

Multiplicative groups: 

length of modulus m in bits

80 160 1'024

112 224 2'048

128 256 3'072

192 384 7'680

256 512 15'360

Comparable security strengths as listed in section 5.6.1.1 starting on page 53 in this

recommendation by the National Institute of Standards and Technology (NIST). The

security level with the red background can no longer be considered secure.

As explained earlier, just the modulus of a multiplicative group has to be this large. The subgroup generated by  can be as “small” as an elliptic

curve group of the same security level. As we will see in the next article about cryptosystems, the input  to the linear one-way function is usually

a private key, while the output  is the corresponding public key. The advantages of elliptic curves over multiplicative groups are that their public

keys are smaller and that their group operations are faster since the numbers are smaller.

Group properties (appendix)

Reduced group axioms
Using universal and existential quantifiers to make statements about the elements of a set, the group axioms can be reduced to:

Commutative groups have an additional axiom:

Less ambiguous notation

Since the third axiom (G3) does not specify how many identity elements there are, this notation is still a bit sloppy as it leaves the meaning of

the identity element in the last axiom (G4) open. Must each element have an inverse for some identity element or for all identity elements?

Keeping the quantifiers at the beginning of the statement and using the logical conjunction  (“and”), the group axioms can be written less

ambiguously as:

If, on the other hand, we replace the invertibility axiom with the following, then we do not define a group:

For example, the binary operation could then be defined as  so that every element is a right identity and every element is a right

inverse for every element, which is clearly not the same (and therefore not a group). We will see soon that there can be only one identity

element and that each element has a unique inverse, which is why this aspect is often ignored.

Group-like algebraic structures

G

k

K

Closure (G1): 

Associativity (G2): 

Identity (G3): 

Invertibility (G4): 

∀ A,B ∈ G A ∘ B ∈ G

∀ A,B,C ∈ G (A ∘ B) ∘ C = A ∘ (B ∘ C)

∃ E ∈ G ∀ A ∈ G A ∘ E = A

∀ A ∈ G ∃ B ∈ G A ∘ B = E

Commutativity (G5): ∀ A,B ∈ G A ∘ B = B ∘ A

∧

∃ E ∈ G ∀ A,B,C ∈ G ∃ D ∈ G A ∘ B ∈ G ∧ (A ∘ B) ∘ C = A ∘ (B ∘ C) ∧ A ∘ E = A ∧ A ∘ D = E

Fake invertibility: ∀ A ∈ G ∃ B ∈ G ∀ C ∈ G C ∘ (A ∘ B) = C

X ∘ Y = X

Generic Multiplicative Additive All

Generic Multiplicative Additive All

Generic Multiplicative Additive All

Generic Multiplicative Additive All

https://ef1p.com/number-theory/
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Cryptosystem
http://localhost:4000/internet/#digital-signatures
https://en.wikipedia.org/wiki/Public-key_cryptography
https://math.stackexchange.com/questions/127646/minimal-axioms-for-a-group
https://math.stackexchange.com/questions/65239/right-identity-and-right-inverse-implies-a-group#comment154089_65239


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2789 / 92

If you remove one or several axioms from the above definition, you get other algebraic structures, most of which have names:

Structure Closure Associativity Identity Invertibility

Semigroupoid × ✓ × ×

Small category × ✓ ✓ ×

Groupoid × ✓ ✓ ✓

Magma ✓ × × ×

Quasigroup ✓ × × ✓

Unital magma ✓ × ✓ ×

Semigroup ✓ ✓ × ×

Loop ✓ × ✓ ✓

Inverse semigroup ✓ ✓ × ✓

Monoid ✓ ✓ ✓ ×

Group ✓ ✓ ✓ ✓

The axioms of various group-like algebraic structures.

Alternative group axioms

Instead of requiring that there is an identity and that each element has an inverse, we can simply require the following axiom:

This means that any element can be reached from any other element both from the left and from the right. This implies that every element

can be reached from itself, i.e. every element has an identity element. In order to prove that this axiom, together with closure and

associativity, defines the same algebraic structure as above, we just need show that the identity element is the same for all elements:

As every equation with two known values and one unknown value has a solution (see the axiom), every element has an inverse.

Properties of equality
Before we can derive properties from the above group axioms, we need to discuss the four basic properties of equality:

Reflexivity (E1): 

Symmetry (E2): 

Transitivity (E3): 

Substitution (E4): 

These properties will be used a lot in the proofs below. Because they are so elementary, I won’t point out when I use them.

Logical conjunction 

The logical conjunction  (“and”) is true if and only if both operands are true ( ) instead of false ( ):

Solvability: ∀ A,B ∈ G ∃ X,Y ∈ G X ∘ A = A ∘ Y = B

For arbitrary elements  and , there exist

 and  so that  and ,

and  and  so that  and .

Thus, .

A B

E  A E  B E  ∘A A = A B ∘ E  =B B

X Y X ∘ B = E  A A ∘ Y = E  B

E  =A X ∘ B = X ∘ (B ∘ E  ) =B (X ∘ B) ∘ E  =B E  ∘A E  =B E  ∘A (A ∘ Y ) = (E  ∘A A) ∘ Y = A ∘ Y = E  B

∀ A ∈ G A = A

∀ A,B ∈ G A = B ⟹ B = A

∀ A,B,C ∈ G A = B ∧ B = C ⟹ A = C

∀ F : G → G ∀ A,B ∈ G A = B ⟹ F (A) = F (B)

∧

∧ ⊤ ⊥

Generic Multiplicative Additive All

Generic Multiplicative Additive All

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Group_(mathematics)#Generalizations
https://en.wikipedia.org/wiki/Semigroupoid
https://en.wikipedia.org/wiki/Category_(mathematics)
https://en.wikipedia.org/wiki/Groupoid
https://en.wikipedia.org/wiki/Magma_(algebra)
https://en.wikipedia.org/wiki/Quasigroup
https://en.wikipedia.org/wiki/Unital_magma
https://en.wikipedia.org/wiki/Semigroup
https://en.wikipedia.org/wiki/Loop_(algebra)
https://en.wikipedia.org/wiki/Inverse_semigroup
https://en.wikipedia.org/wiki/Monoid
https://en.wikipedia.org/wiki/Group_(mathematics)
https://planetmath.org/alternativedefinitionofgroup
https://en.wikipedia.org/wiki/Equality_(mathematics)#Basic_properties
https://en.wikipedia.org/wiki/Reflexive_relation
https://en.wikipedia.org/wiki/Symmetric_relation
https://en.wikipedia.org/wiki/Transitive_relation
https://en.wikipedia.org/wiki/Substitution_(algebra)
https://en.wikipedia.org/wiki/Logical_conjunction


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2790 / 92

The definition of .

If you struggle to remember which of  and  is which, it may help to know that the logical conjunction  corresponds to the intersection 

of the two “events”  and , and that the logical disjunction  corresponds to their union .

Derived group properties

Preservation of equality (G6)

It follows directly from the substitution property that equality is preserved when we apply the same element on both sides:

Generalized associative law (G7)

We prove by induction that every possible parenthesization of  elements is equivalent (  is covered by the axiom G2):

Uniqueness of right identity (G8)

Idempotence

We say that an element is idempotent if it equals itself when it is combined with itself:

All idempotent elements of a group are equal to the same identity element:

Since an identity element is an identity for all elements, including itself, it is idempotent. Thus, all identity elements are the same. As a

consequence, we no longer need to quantify the identity element. Depending on the notation, , , or  simply refers to the unique identity

element from now on. The identity element can also be seen as the output of a nullary function.

Unique identity in commutative groups

P Q P ∧ Q

⊥ ⊥ ⊥

⊥ ⊤ ⊥

⊤ ⊥ ⊥

⊤ ⊤ ⊤

∧

∧ ∨ ∧ ∩
P Q ∨ ∪

∀ A,B,C ∈ G A = B ⟹ A ∘ C = B ∘ C

using   with F (X) = X ∘ C

n > 3 n = 3

Every parenthesization of  is equal to the left-associated expression  because any

such expression can be written as , where , , and  is the position of the outermost

operation. Both  and  are parenthesized in an unknown way, but since they both contain fewer elements than , we know by induction

that they have left-associated equivalents  and . If ,  is a left-associated expression and we are done. Otherwise, 

can be written as . Now,  because of associativity (G2). Since  contains less than  elements,

it has a left-associated equivalent, which makes the expression left-associated. (We know that  and  can be represented by elements of

the set because of closure (G1).)

A  ∘1 A  ∘2 A  ∘3 … ∘ A  n (((A  ∘1 A  ) ∘2 A  ) ∘3 …) ∘ A  n

B ∘ C B = A  ∘1 … ∘ A  m C = A  ∘m+1 … ∘ A  n m

B C n

B′ C ′ m = n − 1 B ∘′ C C ′

D ∘ A  n B ∘′ (D ∘ A  ) =n (B ∘′ D) ∘ A  n B ∘′ D n

B′ D

Idempotence (IP): A ∘ A = A

∃ E ∈ G ∀ A ∈ G ∃ B ∈ G A ∘ E = A ∧ A ∘ B = E ∧

(A ∘ A = A ⟹ A = A ∘ E = A ∘ (A ∘ B) = (A ∘ A) ∘ B = A ∘ B = E)

E O I

Generic Multiplicative Additive All

substitution (E4)

Generic Multiplicative Additive All

Generic Multiplicative Additive All

Generic Multiplicative Additive All

G3 G4

IP G3 G4 G2 IP G4

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Event_(probability_theory)
https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Mathematical_induction
https://en.wiktionary.org/wiki/parenthesization
https://groupprops.subwiki.org/wiki/Associative_implies_generalized_associative
https://en.wikipedia.org/wiki/Idempotence
https://math.stackexchange.com/a/174035/947937
https://en.wikipedia.org/wiki/Arity#Nullary


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2791 / 92

If the operation is commutative, it’s much easier to see why any two identities are the same:

Right inverses are left inverses (G9)

We show that when we apply any right inverse from the left, the resulting element is idempotent and thus equal to the only identity:

Alternative proof

We can also prove that a right inverse is also a left inverse as follows:

Right identity is left identity (G10)

The unique right identity is also an identity element when applied from the left:

Using the same reasoning as above, the left identity is also unique.

Uniqueness of inverses (G11)

It follows that any two inverses of the same element are the same:

Given that every element of the group has an inverse and that the inverse is unique for each element, inversion is a unary operation on the set of

elements. Instead of quantifying the inverse as above, we can use a much simpler notation for the inverse from now on:

E  1 = E  ∘1 E  2 = E  ∘2 E  1 = E  2

∀ A,B ∈ G A ∘ B = E

⇓

(B ∘ A) ∘ (B ∘ A) = (B ∘ (A ∘ B)) ∘ A = (B ∘ E) ∘ A = B ∘ A = E

∀ A,B,C ∈ G A ∘ B = E ∧  B ∘ C = E

⇓

B ∘ A = (B ∘ A) ∘ E = (B ∘ A) ∘ (B ∘ C) = (B ∘ (A ∘ B)) ∘ C = (B ∘ E) ∘ C = B ∘ C = E

∀ A,B ∈ G A ∘ B = E

⇓

E ∘ A = (A ∘ B) ∘ A = A ∘ (B ∘ A) = A ∘ E = A

∀ A,B  ,B  ∈1 2 G A ∘ B  1 = E ∧ A ∘ B  2 = E

⇓

B  1 = B  ∘1 E = B  ∘1 (A ∘ B  )2 = (B  ∘1 A) ∘ B  2 = E ∘ B  2 = B  2

Generic

∀ A ∈ G A ∘ =A ∘A A = E

Multiplicative

∀ A ∈ G A ⋅ A =−1 A ⋅−1 A = I

Additive

∀ A ∈ G A + (−A) = (−A) + A = O

Generic Multiplicative Additive All

G3 G5 G3

Generic Multiplicative Additive All

G4

G7 G4 G3 G8

Generic Multiplicative Additive All

G4 G4

G3 G4 G7 G4 G3 G4

Generic Multiplicative Additive All

G4

G4 G2 G9 G3

Generic Multiplicative Additive All

G4 G4

G3 G4 G2 G9 G10

Generic Multiplicative Additive All

https://ef1p.com/number-theory/
https://math.stackexchange.com/questions/3374804/alternative-axioms-for-groups
https://en.wikipedia.org/wiki/Unary_operation


Number theory explained from first principles ef1p.com/number-theory on 2023-02-2792 / 92

Cancellation property (G12)

Equality is also preserved when you remove the same element from both sides, which is known as the cancellation property:

Unique solution (G13)

As we saw earlier, the following equation has a unique solution in every group (also if the element to be determined is on the right):

The solution is unique because any two solutions  and  are the same:

Double inverse theorem (G14)

The inverse of the inverse is the original element again:

Inversion of combination (G15)

We can invert a combination of two elements by combining their inverses in reverse order:

The copyright of this article and its graphics belong to Kaspar Etter. You can share this article in any form as long as you give proper attribution.

  

∀ A,B,C ∈ G A ∘ C

 (A ∘ C) ∘⟹ C

 A ∘ (C ∘ )⟹ C

 A ∘ E⟹

 A⟹

= B ∘ C

= (B ∘ C) ∘ C

= B ∘ (C ∘ )C

= B ∘ E

= B

  

∀ X,A,B ∈ G X ∘ A

 (X ∘ A) ∘⟹ A

 X ∘ (A ∘ )⟹ A

 X ∘ E⟹

 X⟹

= B

= B ∘ A

= B ∘ A

= B ∘ A

= B ∘ A

X  1 X  2

∀ X  ,X  ,A,B ∈1 2 G X  ∘1 A = B ∧ X  ∘2 A = B

  

 X  ∘ A⟹ 1

 X  ⟹ 1

= X  ∘ A2

= X  2

∀ A ∈ G A ∘ =A E  ⟹ A = E ∘  A ⟹ A = A

∀ A ∈ G (A ∘ B) ∘ ( ∘B )A = (A ∘ (B ∘ )) ∘B A = (A ∘ E) ∘ A = A ∘ A = E

⇓

=A ∘ B ∘B A

Generic Multiplicative Additive All

G6

G2

G4

G3

Generic Multiplicative Additive All

G6

G2

G4

G3

Generic Multiplicative Additive All

E3

G12

Generic Multiplicative Additive All

G13 G10

Generic Multiplicative Additive All

G7 G4 G3 G4

G11

https://ef1p.com/number-theory/
https://en.wikipedia.org/wiki/Cancellation_property

